• Title/Summary/Keyword: wind tunnel test model

Search Result 388, Processing Time 0.023 seconds

A Study on the Pollutant Dispersion over a Mountain Valley Region (I) : Wind Tunnel Experiments (산악 계곡지형에서의 오염확산에 관한 연구(I) :풍동실험)

  • Yoo Seong-Yeon;Shim Woo-Sup;Kim Seogcheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1050-1059
    • /
    • 2005
  • Heat and $SF_6$ gas dispersions over a complex terrain were investigated using wind tunnel. The wind speed, temperature and concentration profiles were measured for the 1/1000 scale complicated terrain model in an Eiffel type boundary layer wind tunnel with test section of 2.5m in height and 4.5m in width. The scale model was mounted on the top of a plate which can rotate with respect to the approaching wind. Dispersion processes from a continuous emission source driven by various wind direction were investigated, including plume climbing over the steep up-slope of the mountain and down-spreading toward the lower level of the valley. Extensive dispersion experiment data (wind speeds and concentration profiles) were provided for verification and validation of dispersion models. Under the identical flow and emission conditions, the independently measured profiles of the temperature and $SF_6$ concentration showed an excellent agreement which ensured the credibility of the results.

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.

Comparison of Wind Pressure Coefficient and Wind Load Standard for Cladding in a Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 개폐식 돔 지붕의 외장재용 풍압 계수와 풍하중 기준 비교)

  • Cheon, Dong-jin;Kim, Yong-Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2018
  • The biggest impact on the cladding design of buildings is wind loads. Wind tunnel tests were conducted to examine the applicability of current wind load standards about membrane retractable roof spatial structure. A dome model with a circular shape that is retractable to the center of the dome was made (Opening ratio = 0, 10, 30, 50). In addition, height adjustable turntables were made and tested with five patterns with H/D = 0.1, 0.2, 0.3, 0.4 and 0.5. The maximum wind pressure coefficient and the minimum wind pressure coefficient for the cladding were analyzed and the experimental wind pressure coefficient were compared with the current wind load standards, KBC2016 and AIJ-RLB(2015). The experimental value and the reference value of the enclosed roof were very similar and showed possibility of application, but opened roof case was found that the reference value was underestimated.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

An Experimental Study of Aerodynamic Drag on High-speed Train

  • Kwon, Hyeok-bin;Lee, Dong-ho-;Baek, Je-hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1267-1275
    • /
    • 2000
  • A series do wind tunnel tests were conducted for Korean high-speed train model with various shape components to assess the contributions to aerodynamic drag. In order to elucidate the ground effects, two different wind tunnels, one with a moving ground system and the other with a fixed ground, were used for the same model and the results of both were compared and analyzed in detail. The result show that a suitable ground simulation is necessary for the test of a train model with many cars and detailed underbody. But the relative difference of the drag coefficients for the modifications of shape components can be measured by a fixed ground test with high accuracy and low cost. The effects of the nose shape, the inter-cargap and the bogie-fairing on total drag were discussed and some ideas were prosed to decrease the aerodynamic resistance of high speed train.

  • PDF

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.100-113
    • /
    • 2017
  • Snap rolling during hard turning and instability during emergency rising are important features of submarine operation. Hydrodynamics modeling using a high incidence flow angle is required to predict these phenomena. In the present study, a quasi-steady dynamics model of a submarine suitable for high-incidence-angle maneuvering applications is developed. To determine the hydrodynamic coefficients of the model, static tests, dynamic tests, and control surface tests were conducted in a towing tank and wind tunnel. The towing tank test is conducted utilizing a Reynolds number of $3.12{\times}10^6$, and the wind tunnel test is performed utilizing a Reynolds number of $5.11{\times}10^6$. In addition, least squares, golden section search, and surface fitting using polynomial models were used to analyze the experimental results. The obtained coefficients are presented in tabular form and can be used for various purposes such as hard turning simulation, emergency rising simulation, and controller design.

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS (스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석)

  • Park, Y.M.;Chang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF