• Title/Summary/Keyword: wind tunnel model test

Search Result 389, Processing Time 0.029 seconds

Airfoil Testing to Obtain Full-range Aerodynamic Characteristics based on Velocity Field Measurements Utilizing a Digital Wind Tunnel (익형의 전 범위 받음각에서 공력특성 시험이 가능한 디지털 풍동의 개발 및 속도장 측정)

  • Kang, Sangkyun;Kim, Jin-Ok;Kim, Yong-Su;Shin, Won-Sik;Lee, Sang-Il;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.60-71
    • /
    • 2022
  • A wind tunnel provides artificial airflow around a model throughout the test section for investigating aerodynamic loads. It has various applications, which include demonstration of aerodynamic loads in the building, automobile, wind energy, and aircraft industries. However, owing to the high equipment costs and space-requirements of wind tunnels, it is challenging for numerous studies to utilize a wind tunnel. Therefore, a digital wind tunnel can be utilized as an alternative for experimental research because it occupies a significantly smaller space and is easily operable. In this study, we performed airfoil testing based on velocity field measurements utilizing a digital wind tunnel. This wind tunnel can potentially be utilized to test the full-range aerodynamic characteristics of airfoils.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

Experimental Studies on Various Ground Simulations for a Wind Tunnel Test of Road Vehicles (지상운송체의 풍동시험을 위한 지면재현의 연구)

  • Kwon, Hyeok-Bin;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.605-610
    • /
    • 2000
  • A series of wind tunnel test were conducted on Korean high speed train model to understand the flow physics around the vehicle related to the aerodynamic drag. For the wind tunnel test on high-speed ground vehicle, a moving ground simulation is necessary to predict the aerodynamic drag accurately. So, the models were tested in three wind tunnels with various ground simulation facility including moving belt ground plane system and tangential blowing system. The test results including measured aerodynamic drag and flow visualization showed that a tangential blowing method can be an alternative ground simulation method in short time using conventional wind tunnel.

  • PDF

Design and Ground Test of Gust Generator for GLA Wind Tunnel Test (돌풍하중완화 풍동시험을 위한 돌풍발생장치 설계 및 지상시험)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.45-48
    • /
    • 2005
  • Tile gust generator was designed for generating the gust field in the wind tunnel test of the scaled flexible wing model for validating gust response alleviation system. The ground operation test was performed for estimating the dynamic performance of tile gust generator before installing it in the wind tunnel for gust field measurement. The ground test results showed that the gust generator has sufficient dynamic capability to simulate the sinusoidal and random motion of the gust generator wing and thus can be used in the wind tunnel test related to gust.

  • PDF

Application of Wind Heeling Moment with Wind Tunnel Test (Wind Tunnel Test를 통한 Wind Moment의 적용 사례)

  • Kim, Jin-ho;Lee, Sang-yeol;Park, Se-il;Kim, Yang-soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.74-78
    • /
    • 2015
  • When floating platform or drilling unit is located at operating station during its design life, it has to have the sufficient stability considering external environment. To evaluate whether offshore structure is complied with the required design criteria for intact stability, the factors which decrease the righting moment have to be considered. Wind heeling moment is one of main factors because the direction is opposite to the righting moment. According to 2009 MODU CODE (Code for the construction and equipment of Mobile Offshore Drilling Units, 2009), wind heeling moment derived from wind tunnel test on scale model of offshore structure enables to apply as alternative given formula and method in 2009 MODU CODE. However, there is no the specific method for applying data derived from wind tunnel test. Based on the following reasons, this paper presents that the calculation method of wind heeling moment utilizing non-dimensional coefficient relative to wind loads (wind forces and moments) and the comparison with each method applying an example.

  • PDF

Wind tunnel tests on flow fields of full-scale railway wind barriers

  • Su, Yang;Xiang, Huoyue;Fang, Chen;Wang, Lei;Li, Yongle
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.171-184
    • /
    • 2017
  • The present study provides a deeper understanding of the flow fields of a full-scale railway wind barriers by means of a wind tunnel test. First, the drag forces of the three wind barriers were measured using a force sensor, and the drag force coefficients were compared with a similar scale model. On this basis, the mean wind velocity and turbulence upwind and downwind of the wind barriers were measured. The effects of pore size and opening forms of the wind barrier were discussed. The results show that the test of the scaled wind barrier model may be unsafe, and it is suitable to adopt the full-scale wind barrier model. The pore size and the opening forms of wind barriers have a slight influence on the flow fields upwind of the wind barrier but have some influences on the flow fields and power spectra downwind of the wind barrier. The smaller pore size generates a lower turbulence density and value of the power spectrum near the wind barrier, and the porous wind barriers clearly provide better shelter than the bar-type wind barriers.

A Study on Wind-Driven Ventilation Performance According to Opening Types in Basement Parking Lots of Apartment - Investigation of Wind Pressure Coefficient by Wind Tunnel Test - (공동주택 지하주차장의 개구유형에 따른 풍력환기 성능에 관한 연구 - 풍동실험에 의한 풍압계수 검토 -)

  • Roh, Ji-Woong
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.37-42
    • /
    • 2011
  • This Paper aims for analyzing the effect of opening types on wind-driven ventilation performance in basement parking lots of apartment. The scale model of basement parking lot was made, wind tunnel tests conducted. Wind pressure of three opening types was measured, wind pressure coefficient calculated. As the result, it showed that the air flow pattern of stack type opening was strongly changed by wind direction, but it was almost not at scuttle vent type. But, as for the difference of wind pressure coefficient, stack type opening was more than the other two types.

A Study on Effective Correction of Internal Drag and Wall Interference Using Response Surface in Wind Tunnel Test (풍동시험에서 반응면을 이용한 내부 항력 및 벽면 효과의 효율적 보정방안 연구)

  • Kim, Junemo;Lee, Yeongbin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.637-643
    • /
    • 2019
  • Wind tunnel testing for flow-through model is necessary for performance prediction of an aircraft with air-breathing jet engine. Internal drag correction and wall correction are performed to acquire preciser wind tunnel test data. Many test runs are generally required to correct internal drag and wall interference in wind tunnel test. In this study we investigated more effective correction schemes using the response surface method. Even though the number of tests required for these schemes was much smaller than that for conventional methods, the differences between corrections using these schemes and conventional methods were similar level with the uncertainty of measurement except for the data near the boundaries.

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.