• Title/Summary/Keyword: wind tower

Search Result 563, Processing Time 0.029 seconds

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

A study on the torsional frequency measurement of wind turbine blades (대형 풍력 블레이드의 비틀림 주파수 측정에 관한 고찰)

  • Ji-Hoon Kim;Jin Bum Moon;Min-Gyu Kang;Woo-Kyoung Lee;Si-Hyun Kim;Jisang Park
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.13-21
    • /
    • 2022
  • When a wind turbine is designed, the dynamic stability of the system as well as the dynamic characteristics of the main components such as blades, hub, main shaft and tower must be evaluated. In particular, the natural frequencies of a blade, as a main load-generating component, need to be measured and assessed by component level testing. In conventional practice, the natural frequencies of a blade are determined as the measured frequencies near the reference frequencies provided by FE analysis results. But the reference frequencies are also uncertain since designers have difficulty distinguishing the torsional mode shape among the analysis results due to the complexity of its mode shape. So, in conventional practice, the determination of a measured torsional frequency inevitably contains uncertainty. Therefore, a novel method to definitely determine the torsional frequencies from the experimental data itself is necessary. In this paper, a new methodology to measure the torsional frequency of a blade was studied from the perspective of a modal test procedure, data processing method and mode determination logic. Finally, the validity of the method that can measure torsional frequency without reference FE analysis results was verified by applying it to an actual large wind turbine blade

Noise and flow analysis of lift-type disk wind power System (양력형 디스크 풍력 발전기의 유동 및 소음 해석)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we investigate the flow characteristics of lift-type disk which behaves the up-down motion using the large eddy simulation (LES) and immersed boundary method (IBM). Also, we perform the noise analysis using pressure field at 1.35 m distance and reveal the cause of noise to observe the vortical structure analysis of flow result. It is observed that vortical structure and wind shear were generated at leading edge and tower with high velocity deficit and flow separation. High magnitude of flow noise was observed in low frequency range which is from 30 Hz to 60 Hz. It was observed that vortical structure at leading edge was generated in frequency range from 33.3 Hz to 41.6 Hz. Temporal characteristic in vortical structure at leading edge was similar to noise characteristics, having the similar frequency ranges.

Development of Performance Analysis S/W for Wind Turbine Generator System (풍력발전시스템 성능 해석 S/W 개발에 관한 연구)

  • Mun, Jung-Heu;No, Tae-Soo;Kim, Ji-Yon;Kim, Sung-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.202-209
    • /
    • 2008
  • Application of wind turbine generator system (WTGS) needs researches for performance prediction, pitch control, and optimal operation method. Recently a new type WTGS is developed and under testing. The notable feature of this WTGS is that it consists of two rotor systems positioned horizontally at upwind and downwind locations, and a generator installed vertically inside the tower. In this paper, a nonlinear simulation software developed for the performance prediction of the Dual Rotor WTGS and testing of various control algorithm is introduced. This software is hybrid in the sense that FORTRAN is extensively used for the purpose of computation and Matlab/Simulink provides a user friendly GUI-like environment.

Measurement and Monitoring of Mechanical Loads of Wind Turbines Using Distributed Fiber Optic Sensor (분포형 광섬유 센서를 이용한 풍력발전기의 기계적 부하 측정 및 모니터링)

  • Lee, Jong-Won;Huh, Young-Cheol;Nam, Yong-Yun;Lee, Geun-Ho;Kim, Yoo-Sung;Lee, Yong-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1036
    • /
    • 2007
  • A method for measurement and monitoring of mechanical loads in large slender structures such as wind turbine blade and tower is presented based on continuous strain data obtained from distributed fiber optic sensor. An experimental study was carried out on an aluminum cantilever beam. A static load test was performed and the calculated moment from the distributed fiber optic sensor agree well with the actual applied moment. A series of damages was inflicted on the beam, and vibration tests were carried out for each damage case. The estimated natural frequencies from the distributed fiber optic sensor for each damage case are found to compare well with those from a conventional accelerometer and a numerical analysis based on an energy method.

Structure Dynamic Analysis of 6kW Class Vertical-Axis Wind Turbine with Tower (타워를 포함한 6kW급 수직축 풍력발전기 구조진동해석)

  • Kim, Dong-Hyun;Ryu, Gyeong-Joong;Kim, Yo-Han;Kim, Sung-Bok;Kim, Kwang-Won;Nam, Hyo-Woo;Lee, Myoung-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.663-670
    • /
    • 2011
  • In this study, the design and verification of 6kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

  • PDF

Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement (고유진동수 기반 석션기초의 지반구속효과 분석)

  • Ryu, Moo Sung;Lee, Jun Shin;Lee, Jong Hwa;Seo, Yun Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower

  • Wu, Xiangguo;Zhang, Xuesen;Zhang, Qingtan;Zhang, Dong;Yang, Xiaojing;Qiu, Faqiang;Park, Suhyun;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.407-421
    • /
    • 2022
  • Prefabricated hybrid wind turbine towers (WTTs) are promising due to height increase. This study proposes the use of ultra-high performance concrete (UHPC) to develop a new type of WTT without the need to use reinforcement. It is demonstrated that the UHPC WTT structure without reinforcing bars could achieve performance similar to that of reinforced concrete WTTs. To simplify the design of WTT, a design approach for the calculation of stresses at the horizontal joints of a WTT is proposed. The stress distribution near the region of the horizontal joint of the WTT structure under normal operating conditions and different load actions is studied using the proposed approach, which is validated by the finite element method. A further parametric study shows that the degree of prestressing and the bending moment both significantly affect the principal stress. The shear-to-torsion ratio also shows a significant influence on the principal tensile stress.

Riser Configuration Design for a 15-MW Floating Offshore Wind Turbine Integrated with a Green Hydrogen Facility

  • Sung-Jae Kim;Sung-Ju Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.137-147
    • /
    • 2024
  • Green hydrogen presents a sustainable and environmentally friendly solution for clean energy production and transportation. This study aims to identify the optimal profile of green hydrogen transportation risers originating from a floating offshore wind turbine (FOWT) integrated with a hydrogen production facility. Employing the Cummins equation, a fully coupled dynamic analysis for FOWT with a flexible riser was conducted, with the tower, mooring lines, and risers described using a lumped mass line model. Initially, motion response amplitude operators (RAOs) were compared with openly published results to validate the numerical model for the FOWT. Subsequently, a parametric study was conducted on the length of the buoyancy module section and the upper bare section of the riser by comparing the riser's tension and bending moment. The results indicated that as the length of the buoyancy module increases, the maximum tension of the riser decreases, while it increases with the lengthening of the bare section. Furthermore, shorter buoyancy modules are expected to experience less fatigue damage, with the length of the bare section having a relatively minor impact on this phenomenon. Consequently, to ensure safety under extreme environmental conditions, both the upper bare section and the buoyancy module section should be relatively short.