• Title/Summary/Keyword: wind tower

Search Result 563, Processing Time 0.027 seconds

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun;Nam, Y.S.;Eun, Sung-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.429-434
    • /
    • 2004
  • Vibration response of the tower structure of a 750kW wind turbine generator is investigated by measurement and analysis. Acceleration response of the tower under various operation condition is monitored in real time by vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the wind turbine tower.

  • PDF

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine (부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석)

  • Kim, Junbae;Shin, Hyunkyoung
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.

Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds

  • Zhu, L.D.;Xu, Y.L.;Zhang, F.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.53-70
    • /
    • 2003
  • Tsing Ma Bridge in Hong Kong is the longest suspension bridge in the world carrying both highway and railway. It has two H-shape concrete towers, each of which is composed of two reinforced concrete legs and four deep transverse prestressed concrete beams. A series of wind tunnel tests have been performed to measure the aerodynamic coefficients of the tower legs and transverse beams in various arrangements. A 1:100 scaled 3D rigid model of the full bridge tower assembled from various tower components has been constructed for different test cases. The aerodynamic coefficients of the lower and upper segments of the windward and leeward tower legs and those of the transverse beams at different levels, with and without the dummy bridge deck model, were measured as a function of yaw wind angle. The effects of wind interference among the tower components and the influence of the bridge deck on the tower aerodynamic coefficients were also investigated. The results achieved can be used as the pertinent data for the comparison of the computed and field-measured fully coupled buffeting responses of the entire bridge under yaw winds.

Investigation on flutter stability of three-tower suspension bridges under skew wind

  • Xinjun Zhang;Xuan-Rui Pan;Yuhan Leng;Bingze Chen
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.43-58
    • /
    • 2024
  • To ensure the flutter stability of three-tower suspension bridges under skew wind, by using the computational procedure of 3D refined flutter analysis of long-span bridges under skew wind, in which structural nonlinearity, the static wind action(also known as the aerostatic effect) and the full-mode coupling effect etc., are fully considered, the flutter stability of a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River in completion and during the deck erection is numerically investigated under the constant uniform skew wind, and the influences of skew wind and aerostatic effects on the flutter stability of the bridge under the service and construction conditions are assessed. The results show that the flutter critical wind speeds of three-tower suspension bridge under service and construction conditions fluctuate with the increase of wind yaw angle instead of a monotonous cosine rule as the decomposition method proposed, and reach the minimum mostly in the case of skew wind. Both the skew wind and aerostatic effects significantly reduce the flutter stability of three-tower suspension bridge under the service and construction conditions, and the combined skew wind and aerostatic effects further deteriorate the flutter stability. Both the skew wind and aerostatic effects do not change the evolution of flutter stability of the bridge during the deck erection, and compared to the service condition, they lead to a greater decrease of flutter critical wind speed of the bridge during deck erection, and the influence of the combined skew wind and aerostatic effects is more prominent. Therefore, the skew wind and aerostatic effects must be considered accurately in the flutter analysis of three-tower suspension bridges.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

Design feasibility of double-skinned composite tubular wind turbine tower

  • Han, Taek Hee;Park, Young Hyun;Won, Deokhee;Lee, Joo-Ha
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.727-753
    • /
    • 2015
  • A double-skinned composite tubular (DSCT) wind power tower was suggested and automatic section design software was developed. The developed software adopted the nonlinear material model and the nonlinear column model. If the outer diameter, material properties and design capacities of a DSCT wind power tower are given, the developed software performs axial force-bending moment interaction analyses for hundreds of sections of the tower and suggests ten optimized cross-sectional designs. In this study, 80 sections of DSCT wind power towers were designed for 3.6 MW and 5.0 MW turbines. Moreover, the performances of the 80 designed sections were analyzed with and without considerations of large displacement effect. In designing and analyzing them, the material nonlinearity and the confining effect of concrete were considered. The comparison of the analysis results showed the moment capacity loss of the wind power tower by the mass of the turbine is significant and the large displacement effect should be considered for the safe design of the wind power tower.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Introduction of the Design Standard of Tower for Overhead Transmission Line in KEPCO (가공송전용 철탑설계기준(안) 소개 및 주요내용 해설)

  • Kim, K.H.;Woo, J.W.;Shim, E.B.;Shin, T.W.;You, C.H.;Bang, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.351-353
    • /
    • 2002
  • Up to now the design standard of tower for overhead transmission line in KEPCO was revised four times since 1970. During last year. we had reviewed this design standard. This paper shows the design standard of tower for overhead transmission line in KEPCO. In this standard, a kind of tower was defined as standard tower and special tower. Also we had defined usage range of standard tower, tower height, arrangement of power line, design condition of tower arm and etc. On the wind pressure, we had defined basic velocity pressure per region and maximum wind pressure. For special region, design wind pressure will be considered the receded wind velocity of meteorological observatory and regional condition by this standard.

  • PDF

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.