• Title/Summary/Keyword: wind tower

Search Result 563, Processing Time 0.027 seconds

Response of transmission line conductors under different tornadoes

  • Dingyu Yao;Ashraf El Damatty;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.179-189
    • /
    • 2023
  • Multiple studies conducted in the past evaluated the conductor response under one tornado wind field, while the performance of transmission lines under different tornado wind fields still remains unknown. Thus, the objective of this paper is to estimate the variation in the conductor's critical longitudinal and transverse reactions under different tornado wind fields, as well as providing the corresponding critical tornado configurations. The considered full-scale tornadoes are the Spencer, South Dakota, 1998, the Stockton, Kansas, 2005 and the Goshen County, Wyoming, 2009. Computational Fluid Dynamics (CFD) simulations were previously conducted to develop these wind fields. All tornadoes have been rescaled to have a common velocity matching the upper limit of the F2 Fujita scale. Eight conductor systems, each including six spans, are considered in this paper. For each conductor, parametric studies are conducted by varying the location of the three tornado wind fields relative to the tower of interest, therefore the peak reactions associated with each tornado are determined. A semi-analytical closed-form solution, previously developed and validated, is used to calculate the reactions. The study conducted in this paper can be divided into two parts: In the first part, a parametric study considering a wide range of tornado locations is conducted. In the second part, the parametric study focuses on the tornado location leading to the critical tangential velocity on the tower. Based on this extensive parametric study, a critical tornado defined as the Design Tornado and its critical locations, tornado distance R = 125 m, tornado angle 𝜃 = 15° and 30°, are recommended for design purposes.

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

A Design of 150 meters high steal tower (150m 철탑의 설계 I)

  • 이재숙
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.43-56
    • /
    • 1968
  • The design of this antenna tower on the publication had been prepared by writer in order to compare with that of towers for power transmission line or to show the differences on designs existing on their design standards. The design of this antenna tower is also featuring on the following points; (1) the height of tower is 150meters high, (2) combined steel angles are adopted besides angles, (3) the direction of 45degree wind is taken account into design, (4) the additional stresses of horizontal members located in the bending points of main posts are contemplated though these additional stressess are not shown on stress diagram.

  • PDF

Design of Power and Load Reduction Controller for a Medium-Capacity Wind Turbine (중형 풍력터빈의 출력 및 타워 하중저감 제어기 설계)

  • Kim, Kwansu;Paek, Insu;Kim, Cheol-Jin;Kim, Hyun-Gyu;Kim, Hyoung-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2016
  • A control algorithm for a 100 kW wind turbine is designed in this study. The wind turbine is operating as a variable speed variable pitch (VSVP) status. Also, this wind turbine is a permanent magnet synchronous generator (PMSG) Type. For the medium capacity wind turbine considered in this study, it was found that the optimum tip speed ratios to achieve the maximum power coefficients varied with wind speeds. Therefore a commercial blade element momentum theory and multi-body dynamics based program was implemented to consider the variation of aerodynamic coefficients with respect to Reynolds numbers and to find out the power and thrust coefficients with respect tip speed ratio and blade pitch angles. In the end a basic power controller was designed for below rated, transition and above rated regions, and a load reduction algorithm was designed to reduce tower vibration by the nacelle motion. As a result, damage equivalent Load (DEL) of tower fore-aft has been reduced by 32%. From dynamic simulations in the commercial program, the controller was found to work properly as designed. Experimental validation of the control algorithm will be done in the future.

An Experimental Study for Efficient Design Parameters of a Wind Power Tower (풍력타워의 효율적인 설계변수에 대한 실험적 연구)

  • Cho, Soo-Yong;Choi, Sang-Kyu;Kim, Jin-Gyun;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.114-123
    • /
    • 2018
  • Wind power tower (WPT) has been used to augment the performance of vertical axis wind turbine (VAWT). However, the performance of the WPT depends on several design parameters, such as inner and outer radius, or number of guide walls. Therefore, an experimental study was conducted to investigate efficient design parameters on the WPT. A wind tunnel was utilized and its test section dimension was 2m height and 2.2m width. One story model of the WPT was manufactured with seven guide walls and a VAWT was installed within the WPT. Three different sizes of guide walls were applied to test with various design parameters. The power coefficients were measured along the azimuthal direction in a state of equal inlet velocity in order to compare its performance relatively. The experimental results showed that the gap between the inner radius of the WPT and the rotating radius of the VAWT was a major parameter to improve the performance of VAWT within the WPT.

A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part2 (풍력터빈의 구조특성 평가에 관한 연구-Part2)

  • Lee, Kyoung-Soo;Huque, Ziaul;Kommalapati, Raghava;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

A Development of Modular Monitoring System for Wind Turbine Test Site (풍력 실증단지를 위한 분산 형 모니터링 시스템 개발)

  • Lee Jeong Wan;Yoo Neung Soo;Nam Yoon Su;Cho Byung Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.9-12
    • /
    • 2005
  • In this paper. we offer a new monitoring system that controls all of the windfar. it can also apply use general wind turbine systems and real meteorological tower. We propose a hierarchical releiable monitoring system connected by wireless communication channels between monitoring host computer and modular slave measuring subsystems. Our system has two hierarchical subsystems: slave measuring systems, and supervisory host computer. We design and implement that the slave measuring subsystems is placed in meteorological tower and wind turbines, and the supervisory host computer in safety zone, The micro-controller in slave measuring system is duplicated using cold-standby method for reliability. The host computer and slave system constructs a feedback system, with wireless communication channel between them. For monitoring and command function, the supervisory computer is implemented with a Personal Computer using graphic user interface. Consequently. we can get a reliable but economic system.

  • PDF

The study for design of the foundation insert of large wind turbine (대형풍력터빈 기초 인서트 설계에 관한 연구)

  • Han, Dong-Young;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.391-394
    • /
    • 2007
  • The foundation insert is a tubular steel section which is embedded into the concrete of the foundation. The tower base section of the wind turbine is mounted on it. It has a top flange (L type) protruding far enough above the concrete to allow bolts to be inserted from underneath. The load is transmitted to the concrete at the base of the section through a T shaped flange. It has many holes for the reinforcements and the cables. The reinforcements of the concrete foundation run through the insert via a series of holes to bind the inner section to the outer section. Holes are provided for the power and communications cabling. The design follows normal European wind turbine practice, based on GL 2003 and Eurocode regulations.

  • PDF