• Title/Summary/Keyword: wind tower

Search Result 563, Processing Time 0.022 seconds

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.

Two case studies on structural analysis of transmission towers under downburst

  • Yang, FengLi;Zhang, HongJie
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.685-701
    • /
    • 2016
  • Downbursts are of great harm to transmission lines and many towers can even be destroyed. The downburst wind field model by Chen and Letchford was applied, and the wind loads of two typical transmission towers in inland areas and littoral areas were calculated separately. Spatial finite element models of the transmission towers were established by elastic beam and link elements. The wind loads as well as the dead loads of conductors and insulators were simplified and applied on the suspension points by concentrated form. Structural analysis on two typical transmission towers under normal wind and downburst was completed. The bearing characteristics and the failure modes of the transmission towers under downburst were determined. The failure state of tower members can be judged by the calculated stress ratios. It shows that stress states of the tower members were mainly controlled by 45 degree wind load. For the inland areas with low deign wind velocity, though the structural height is not in the highest wind velocity zone of downburst, the wind load under downburst is much higher than that under normal wind. The main members above the transverse separator of the legs will be firstly destroyed. For the littoral areas with high deign wind velocity, the wind load under downburst is lower than under normal wind. Transmission towers are not controlled by the wind loads from downbursts in design process.

Reliability of microwave towers against extreme winds

  • Deoliya, Rajesh;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.555-569
    • /
    • 1998
  • The reliability of antenna tower designed for a n-year design wind speed is determined by considering the variability of the strength of the component members and of the mean wind speed. For obtaining the n-year design wind speed, maximum annual wind speed is assumed to follow Gumbel Type-1 distribution. Following this distribution of the wind speed, the mean and standard deviation of stresses in each component member are worked out. The variability of the strength of members is defined by means of the nominal strength and a coefficient of variation. The probability of failure of the critical members of tower is determined by the first order second moment method (FOSM) of reliability analysis. Using the above method, the reliability against allowable stress failure of the critical members as well as the system reliabilities for a 75 m tall antenna tower, designed for n-year design wind speed, are presented.

Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction (송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Lee, Sung-Kyung;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.649-661
    • /
    • 2007
  • Friction-type reinforcing members(FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction (송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD (EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구)

  • Kim, S.Y.;Jin, D.H.;Lee, K.B.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.

Mitigation of wind-induced responses of cylinder solar tower by a tiny eddy current tuned mass damper based on elastic wind tunnel tests

  • Liu, Min;Li, Shouying;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • Solar towers, which often has a large aspect ratio and low fundamental natural frequency, were extremely prone to large amplitude of wind-induced vibrations, especially Vortex-Induced Vibration (VIV). A tiny Tuned Mass Damper (TMD) with conveniently adjustable eddy current damping was specially designed and manufactured for elastic wind tunnel tests of a solar tower. A series of numerical simulations by using the COMSOL software were conducted to determine three key parameters, including the thickness of the back iron plate and the conductive plate (Tb and Tc), the distance between the magnet and the conductive plate (Td). Based on the results of numerical simulations, a tiny TMD was manufactured and its structural parameters were experimentally identified. The optimized values of the tiny TMD can be conveniently realized. The tiny TMD was installed at the top of the elastic test model of a 243-meter-high solar tower, and a series of wind tunnel tests were carried out to examine the effectiveness of the TMD in suppressing wind-induced responses of the test model. The results showed that the wind-induced responses could be obviously reduced by the TMD, especially in the cross-wind direction. The cross-wind RMS and peak responses at the critical wind velocity can be reduced by about 86% and 75%, respectively. However, the maximum reduction of the responses at the design wind velocity is about 45%, obviously less than that at the critical wind velocity.

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.