• Title/Summary/Keyword: wind spectra

Search Result 148, Processing Time 0.033 seconds

Stationary and non-stationary buffeting analyses of a long-span bridge under typhoon winds

  • Tao, Tianyou;Wang, Hao;Shi, Peng;Li, Hang
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.445-457
    • /
    • 2020
  • The buffeting response is a vital consideration for long-span bridges in typhoon-prone areas. In the conventional analysis, the turbulence and structural vibrations are assumed as stationary processes, which are, however, inconsistent with the non-stationary features observed in typhoon winds. This poses a question on how the stationary assumption would affect the evaluation of buffeting responses under non-stationary wind actions in nature. To figure out this problem, this paper presents a comparative study on buffeting responses of a long-span cable-stayed bridge based on stationary and non-stationary perspectives. The stationary and non-stationary buffeting analysis frameworks are firstly reviewed. Then, a modal analysis of the example bridge, Sutong Cable-stayed Bridge (SCB), is conducted, and stationary and non-stationary spectral models are derived based on measured typhoon winds. On this condition, the buffeting responses of SCB are finally analyzed by following stationary and non-stationary approaches. Although the stationary results are almost identical with the non-stationary results in the mean sense, the root-mean-square value of buffeting responses are underestimated by the stationary assumption as the time-varying features existing in the spectra of turbulence are neglected. The analytical results highlights a transition from stationarity to non-stationarity in the buffeting analysis of long-span bridges.

Atomic Raman Spectroscopy of Wind Accretion in Symbiotic Stars

  • Heo, Jeong-Eun;Lee, Hee-Won;Angeloni, Rodolfo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.46.3-46.3
    • /
    • 2019
  • We present our observational and theoretical investigation of Raman-scattered features in symbiotic stars (SySts). SySts are long interacting binaries, consisting of a hot compact star and an evolved giant, whose interaction via accretion process is at the origin of a tangled network of gas and dust nebulae. These systems are ideal objects to study a variety of important astrophysical problems, and have also been proposed as possible progenitors of type Ia supernova. In this talk, we emphasize that Raman-scattered features are exclusive spectroscopic tools to probe the stellar wind accretion processes in SySts. We studied mass transfer and mass loss processes in SySts using high resolution spectra obtained with 1.8m telescope at Mt. Bohyun and the 6.5m Magellan-Clay telescope combining with the theoretical modeling of radiative transfer of Raman-scattered features. We also note that there are a much smaller number of SySts known in our Galaxy, implying the necessity of systematic search programs. In view of the fact that Raman O VI features at $6830{\AA}$ are found in only bona fide SySts, we will carry out a photometric search of objects with Raman O VI features using a narrow band filter centered at $6830{\AA}$ in Local group galaxies.

  • PDF

Observational Properties of Wolf-Rayet stars and Type Ib/Ic supernova progenitors

  • Jung, Moo-Keon;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.3-42.3
    • /
    • 2020
  • We investigate the observational properties of Wolf-Rayet stars, suggest the constraint of their mass-loss rate and apply our results to the observed progenitor candidates of Type Ib/Ic supernovae (iPTF13bvn and SN 2017ein). For this purpose, we adopt the WR star models with various mass-loss rates and wind terminal velocities. We obtain the high resolution spectra of those models at the pre-supernova phase using the radiative transfer code CMFGEN. We verify the optically faint property of SN Ic progenitors and show that the optical faintness is mainly originated by the high effective temperature at the photosphere. We also show that a simple analytic model for WR winds using a constant opacity can roughly predict the photospheric parameters. We show that the change of the mass-loss rate and the terminal wind velocity critically affects the optical luminosity. We find the optical luminosities of SN Ic progenitor models with our fiducial mass-loss rate prescription are fainter than the detection limits. We also suggest the mass-loss rate of WR stars may not exceed 2 times of our fiducial value by comparing our predictions with the detection limit of SN Ib/Ic progenitors. The directly observed progenitor candidate of iPTF13bvn can be explained by our SN Ib progenitor models. We find that the SN 2017ein progenitor candidate is too bright and too blue to be a SN Ic progenitor.

  • PDF

Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season (서해 천수만 중앙부의 하계 조류/비조류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2013
  • This study analyzed the ADCP records along with wind by KMA and discharge records at Seosan A-, B-district tide embankment by KRC for 33 days obtained in the Chunsu Bay, Yellow Sea, Korea spanning from July 29 to August 30, 2010. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, complex correlation, progressive vector diagram and cumulative curves to understand the tidal and sub-tidal current characteristics caused by local wind and discharge effect. Observed current speed ranges from -30 to 40 (cm/sec), with standard deviation from 1.7 (cm/sec) at bottom to 18.7 (cm/sec) at surface. According to the harmonic analysis results, the tidal current direction show NNW-SSE. The magnitudes of semi-major axes range from 9.4 to 14.8 (cm/sec) for M2 harmonic constituent and from 4.4 to 7.0 (cm/sec) for S2, respectively. And the magnitudes of semi-minor axes range from 0.1 to 0.5 (cm/sec) for M2 and from 0.4 to 1.4 (cm/sec) for S2, respectively. In the spectral analysis results in the frequency domain, we found 3~6 significant spectral peaks for band-passed wind and residual current of all depth. These peak periods represent various periodicities ranging from 2 to 8 (days). In the coherency analysis results between band-passed wind and residual current of all depth, several significant coherencies could be resolved in 3~5 periodicities within 2.8 (days). Highest coherency peak occurred at 4.6 (day) with 1.2-day phase lag of discharge to band-passed residual current. The progressive vector of wind and residual current travelled to northward at all layers, and the travel distance at middle layer was greater than surface layer distance. The Northward residual current was caused by a seasonal southern wind, and the density-driven current formed by fresh water input effected southward residual current. The sub-tidal current characteristics is determined by seasonal wind force and fresh water inflow in the Chunsu Bay, Yellow Sea, Korea.

Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification (시스템 식별기법을 활용한 파압과 해수면 모델링)

  • Cieslikiewicz, Witold;Badur, Jordan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.422-432
    • /
    • 2013
  • A System Identification method to develop parametric models linking free surface elevation and wave pressure is presented and two models are built allowing for either wave pressure or free surface elevation simulation. Linear, time invariant model structures with static nonlinearities are assumed and solutions are sought in a form of autoregressive model with extra input (ARX). An arbitrary chosen free-surface elevation and wave pressure dataset is used for estimation of the models, which are subsequently verified against datasets with similar pressure gauge depth but different free-surface elevation spectra due to different meteorological conditions. It is shown that free-surface simulation using System Identification methods can perform better than traditional linear transfer function derived from linear wave theory (LTF), while wave pressure simulation quality using presented methods is generally similar to that obtained with corrected LTF.

Numerical Study on Temporal Evolution of Wind-Wave Spectra (풍파 스펙트럼의 시간발전에 관한 수치 실험)

  • 오병철;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.20-33
    • /
    • 1999
  • The evolution of deep-sea waves is driven by energy input from wind, nonlinear energy transfer between wave components, and dissipation through whitecaps. A comparative study was implemented by the use of two wave models in which only the computation methods of nonlinear wave-wave interactions are different from each other. It was reaffirmed that the nonlinear interaction plays a central role in such phenomena that occurred during the spectral growth of wind-seas as down-shift of the spectral peak frequency, overshoot, undershoot, and formation of self-similar spectrum. Specifically, the directional distribution at high frequencies develops into bimodal form, which is attributed to the nonlinear interactions. As saturation stage is reached, spectral density at high frequencies becomes proportional to negative 4 power to the frequency. Perturbations introduced into the spectrum quickly vanished through the actions of the self-similar mechanism. Thus, the nonlinear transfer has important contribution to the stability of numerical ocean wave models.

  • PDF

Parametric Study on the Buffeting Response for a Cable-Stayed Bridge (사장교의 버페팅 응답 변수 연구)

  • Kim, Ho-Kyung;Choi, Sung Won;Kim, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.371-382
    • /
    • 2006
  • A buffeting analysis is utilized for the estimation of aerodynamic vulnerability of a cable-stayed bridge due to upcoming wind turbulences. The buffeting analysis requires several input parameters such as structural parameters, aerodynamic parameters, and aero-elastic parameters. This study is motivated to estimate the sensitivity of these parameters on buffeting responses. The Seohae bridge is selected as an example bridge. The investigated parameters consist of the inclination of lift and drag coefficient of stiffening girder section, exponential decay factors of span-wise distributed wind turbulences, roughness length, spectra of wind velocity fluctuation, and structural damping. The buffeting response showed high dependency on the input parameters. As conclusions, the importance of parameter selection is emphasized. A further study is also proposed for more general conclusions.

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • 홍진숙;전재진;김상윤;신구균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2002
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boundary layer in the low noise wind tunnel. From this experiment we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and find the relations between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee Seungbae;Lee Chang-Jun;Kwon O-Sup;Jeon Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.779-782
    • /
    • 2002
  • We examine the problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick, open-cell foam with fabric covering and a viscoelastic painted plate of 1mm thick over an acoustic board of 4m thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber ($k_{ch}$) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

  • PDF

Experimental Study of Wall Pressure Fluctuations in the Regions of Flow Transition (천이 경계층 유동의 벽면 변동 압력에 관한 실험적 연구)

  • Shin, Ku-Kyun;Hong, Chin-Suk;Jeon, Jae-Jin;Kim, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.811-816
    • /
    • 2000
  • It has been long suspected that the transition region may give rise to local pressure fluctuations and radiated sound that are different from those created by the fully-developed turbulent boundary layer at equivalent Reynolds number. Experimental investigation described in this paper concerns the characteristics of pressure fluctuations at the transition. Flush-mounted microphones and hot wires are used to measure the pressure fluctuations and local flow velocities within the boudary layer in the low noise wind tunnel. From this experimental we could observe the spatial and temporal development process of T-S wave using Wigner-Ville method and found the possibility of relation between the characteristic frequency of T-S wave and free stream velocity and the boundary layer thickness based on nondimensional pressure spectra scaled on outer variables.

  • PDF