• 제목/요약/키워드: wind shielding effects of bridge tower

검색결과 2건 처리시간 0.018초

Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers

  • Zhang, Nan;Ge, Guanghui;Xia, He;Li, Xiaozhen
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.311-329
    • /
    • 2015
  • A method for analyzing the coupled wind-vehicle-bridge system is proposed that also considers the shielding effect of the bridge tower with triangular wind barriers. The static wind load and the buffeting wind load for both the bridge and the vehicle are included. The shielding effects of the bridge tower and the triangular wind barriers are incorporated by taking the surface integral of the wind load. The inter-history iteration is adopted to solve the vehicle-bridge dynamic equations with time-varying external loads. The results show that after installing the triangular wind barriers in the area of the bridge tower, the bridge response and the vehicle safety factors change slightly. The peak value of the train car body acceleration is significantly reduced when the wind barrier size is increased.

Impacts of wind shielding effects of bridge tower on railway vehicle running performance

  • Wu, Mengxue;Li, Yongle;Zhang, Wei
    • Wind and Structures
    • /
    • 제25권1호
    • /
    • pp.63-77
    • /
    • 2017
  • When railway vehicles run by towers of long span bridges, the railway vehicles might experience a sudden load-off and load-on phenomenon in crosswind conditions. To ensure the running safety of the railway vehicles and the running comfort of the passengers, some studies were carried out to investigate the impacts of sudden changes of aerodynamic loads on moving railway vehicles. In the present study, the aerodynamic coefficients which were measured in wind tunnel tests using a moving train model are converted into the aerodynamic coefficients in the actual scale. The three-component aerodynamic loads are calculated based on the aerodynamic coefficients with consideration of the vehicle movement. A three-dimensional railway vehicle model is set up using the multibody dynamic theory, and the aerodynamic loads are treated as the inputs of excitation varied with time for kinetic simulations of the railway vehicle. Thus the dynamic responses of the railway vehicle passing by the bridge tower can be obtained from the kinetic simulations in the time domain. The effects of the mean wind speeds and the rail track positions on the running performance of the railway vehicle are discussed. The three-component aerodynamic loads on the railway vehicle are found to experience significant sudden changes when the vehicle passes by the bridge tower. Correspondingly, such sudden changes of aerodynamic loads have a large impact on the dynamic performance of the running railway vehicle. The dynamic responses of the railway vehicle have great fluctuations and significant sudden changes, which is adverse to the running safety and comfort of the railway vehicle passing by the bridge tower in crosswind conditions.