• Title/Summary/Keyword: wind profile

Search Result 280, Processing Time 0.019 seconds

Calculation of Vertical Wind Profile Exponents and Its Uncertainty Evaluation - Jeju Island Cases (풍속고도분포지수 산정 및 불확도 평가 - 제주도 사례)

  • Kim, You-Mi;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-yeol;Kim, Jin-Young;Kim, Chang Ki;Kim, Shin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.11-20
    • /
    • 2016
  • For accurate wind resource assessment and wind turbine performance test, it is essential to secure wind data covering a rotor plane of wind turbine including a hub height. In general, we can depict wind speed profile by extrapolating or interpolating the wind speed data measured from a meteorological tower where multiple anemometers are mounted at different heights using a power-law of wind speed profile. The most important parameter of a power-law equation is a vertical wind profile exponent which represents local characteristics of terrain and land cover. In this study, we calculated diurnal vertical wind profile exponents of 8 locations in Jeju Island who possesses excellent wind resource according to the GUM (Guide to the Expression of Uncertainty in Measurement) to evaluate its uncertainty. Expanded uncertainty is calculated by combined standard uncertainty, which is the result of composing type A standard uncertainty with type B standard uncertainty. Although pooled standard deviation should be considered to derive type A uncertainty, we used the standard deviation of vertical wind profile exponent of each day avoiding the difficult of uncertainty evaluation of diurnal wind profile variation. It is anticipated that the evaluated uncertainties of diurnal vertical wind profile exponents at 8 locations in Jeju Island are to be registered as a national standard reference data and widely used in the relevant areas.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

Analysis of Wind Environments at Homi-Cape, Pohang (포항 호미곶의 풍환경 분석)

  • Kim Hyun-Goo;Choi Jae-Ou;Jung Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.451-454
    • /
    • 2002
  • In the present paper, the practicability of Commentray on Wind Loads of Korean Standard Design Loads fur Buildings, which has been enacted in Minstry of Construction and Transportation in June 2000, is validated by using the meteorological data measured at Homi-Cape, Pohang. Assuming that the vertical wind profile follows the power-law in a quasi-steady state, wind profile exponents are calculated by seasons by using wind data as collected through four monitoring towers. According to the Commentray on Wind Loads, Pohang is classified with its exposure category being B and the wind profile exponent being 0.22, while it is identified that the average wind profile exponent as calculated in this study is 0.26. Also, in this paper, a cross-correlation method is suggested in order to identify any meteorological correlation between measurement sites quantitatively.

  • PDF

Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass

  • Li, Jiawu;Shen, Zhengfeng;Xing, Song;Gao, Guangzhong
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.85-97
    • /
    • 2020
  • The accurate estimation of the buffeting response of a bridge pylon is related to the quality of the bridge construction. To evaluate the influence of wind field characteristics on the buffeting response of a pylon in a trumpet-shaped mountain pass, this paper deduced a multimodal coupled buffeting frequency domain calculation method for a variable-section bridge tower under the twisted wind profile condition based on quasi-steady theory. Through the long-term measurement of the wind field of the trumpet-shaped mountain pass, the wind characteristics were studied systematically. The effects of the wind characteristics, wind yaw angles, mean wind speeds, and wind profiles on the buffeting response were discussed. The results show that the mean wind characteristics are affected by the terrain and that the wind profile is severely twisted. The optimal fit distribution of the monthly and annual maximum wind speeds is the log-logistic distribution, and the generalized extreme value I distribution may underestimate the return wind speed. The design wind characteristics will overestimate the buffeting response of the pylon. The buffeting response of the pylon is obviously affected by the wind yaw angle and mean wind speed. To accurately estimate the buffeting response of the pylon in an actual construction, it is necessary to consider the twisted effect of the wind profile.

Numerical Assessment of Wake Effect by Prevailing Wind Around Wido Island (주풍향에 의한 위도(蝟島) 근방의 후류 영향 평가)

  • Ryu, Ki-Wahn;Jang, Jea-Kyung
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.40-46
    • /
    • 2018
  • In this study, a three-dimensional Navier-Stokes simulation around Wido Island was performed to analyze the wake effect behind an island. A 10 m/s wind speed and pressure boundary conditions were assigned for the inflow and outflow boundary conditions, respectively. Wido Island was modeled using GIS data. A prevailing wind from the north-northwest direction was determined based on QuikSCAT satellite data. A computational domain of $40km{\times}20km{\times}5km$ covering Wido Island was applied for numerical analysis. Sixty points were specified to extract the wind speed data. A wind speed profile inside the atmospheric boundary layer was compared with a wind profile using a simple power law. It turns out that the wake effect decreases the mean wind speed by 5% more or less, which corresponds to a 14% decrease in wind energy. Thus, the installation of a meteorological mast or development of a wind farm behind Wido Island is not highly recommended.

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

Assessment of Wind Energy Potentiality in Wolryong using Short-term Observation (단기관측에 의한 월령 연안지역 풍력에너지 잠재량 평가)

  • Jeong, Tae-Yoon;Lim, Hee-Chang
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2009
  • Wind energy resources are recently considered as an important power generation alternative in the future. The fact that the investment of wind turbine installation continues to increase has motivated a need to develop more widely applicable methodologies for evaluating the actual benefits of adding wind turbines to conventional generating systems. This study is aiming to estimate the future wind resources with various estimation methods. The wind power is calculated at the hub height 75m of 800KW and 1,500KW wind turbines in Wolryong site, Jeju island, South Korea. Three equations - logarithmic, profile, and power law methods are applied for the accurate prediction of wind profile. In addition, yearly wind power can be calculated by using Weibull & Rayleigh distribution. It is found that predicted wind speed is highly affected by friction velocity, atmospheric stability, and averaged roughness length. It is concluded that Rayleigh distribution provides greater power generation than the Weibull distribution, especially for low wind-speed condition.

  • PDF

The Wind Load Evaluation on Building Considering Vertical Profile of Fluctuating Wind Force (변동풍력의 연직분포를 고려한 건축물의 풍하중 평가)

  • Ryu, Hye-Jin;Shin, Dong-Hyeon;Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.157-164
    • /
    • 2019
  • The wind tunnel test makes it possible to predict the wind loads for the wind resistant design. There are many methods to evaluate wind loads from data obtained from the wind tunnel test and these methods have advantages and disadvantages. In this study, two of these methods were analyzed and compared. One is the wind load evaluation method by fluctuating displacement and the other is the wind load evaluation method considering vertical profile of fluctuating wind force. The former method is evaluated as the sum of the mean wind load of the average wind force and the maximum value of the fluctuating wind load. The latter method is evaluated as the sum of the mean wind load and maximum value of the background wind load, and the maximum value of the resonant wind load. Two methods were applied to the wind tunnel test to compare the evaluated wind loads according to the two methods, with a maximum difference of about 1.2 times. The wind load evaluated by the method considering vertical profile of the fluctuating wind force (VPFWF) was larger than the wind load evaluated by the method by fluctuating displacement (FD). Especially, the difference of the wind load according to the two methods is large in the lower part of the building and the wind load is reversed at a specific height of the building. VPFWF of evaluating resonant wind loads and background wind loads separately is more reasonable.

Study for the Power Characteristic of NREL Phase VI Blade considering Wind Shear (Wind Shear를 고려한 NREL Phase VI 블레이드의 출력특성연구)

  • Park, Sangjun;Lee, Kyungseh;Kim, Youngchan;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • As rotor blade of a wind turbine becomes larger to satisfy the economic efficiency for offshore wind farm, the numerical analysis considering wind profile is getting emphasized. In this paper, the study for the power characteristic of a wind turbine is carried out using NREL phase VI wind turbine applied wind profile. The experimental data of NASA Ames wind tunnel for inflow velocity 7m/s is used and the numerical result is obtained by using CFD commercial solver(FLUENT).

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.