• Title/Summary/Keyword: wind power law

Search Result 93, Processing Time 0.023 seconds

Power Law Exponent in Coastal Area of Northeastern Jeju Island for the Investigation of Wind Resource (풍력자원 조사를 위한 제주 북동부 연안역의 멱지수 분석)

  • Moon, Seo Jeong;Ko, Jung Woo;Lee, Byung Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 2013
  • Wind shear means the variation of wind speed according to the height. Wind shear is the important factor affecting the energy production of wind turbines. Power Law is used to extrapolate wind speed data. Normally, a Power Law exponent of 0.143 is used and this is referred to as the 1/7th Power Law. The Power Law exponent is affected by atmospheric stability and surface roughness of the site. Thus, it is necessary to calculate the Power Law exponent of the site exactly for an accurate estimation of wind energy. In this study, wind resources were measured at the three Met-masts which were located in the coastal area of northeastern Jeju Island. The Power Law exponents of the sites were calculated and proposed using measured data. They were 0.141 at Handong, 0.138 at Pyeongdae, and 0.1254 at Udo. We compared annual energy productions which are calculated using a Power Law exponent of 0.143, the proposed value of the Power Law exponents for each site, and the measured data. As a result, the cases of calculating using the proposed values were more similar to the cases using the measured data than the cases using the 0.143 value. Finally, we found that the propsed values of the Power Law exponent are available to more accurately estimate wind resources.

A summertime near-ground velocity profile of the Bora wind

  • Lepri, Petra;Kozmar, Hrvoje;Vecenaj, Zeljko;Grisogono, Branko
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.505-522
    • /
    • 2014
  • While effects of the atmospheric boundary layer flow on engineering infrastructure are more or less known, some local transient winds create difficulties for structures, traffic and human activities. Hence, further research is required to fully elucidate flow characteristics of some of those very unique local winds. In this study, important characteristics of observed vertical velocity profiles along the main wind direction for the gusty Bora wind blowing along the eastern Adriatic coast are presented. Commonly used empirical power-law and the logarithmic-law profiles are compared against unique 3-level high-frequency Bora measurements. The experimental data agree well with the power-law and logarithmic-law approximations. An interesting feature observed is a decrease in the power-law exponent and aerodynamic surface roughness length, and an increase in friction velocity with increasing Bora wind velocity. This indicates an urban-like velocity profile for smaller wind velocities and rural-like velocity profile for larger wind velocities, which is due to a stronger increase in absolute velocity at each of the heights observed as compared to the respective velocity gradient (difference in average velocity among two different heights). The trends observed are similar during both the day and night. The thermal stratification is near neutral due to a strong mechanical mixing. The differences in aerodynamic surface roughness length are negligible for different time averaging periods when using the median. For the friction velocity, the arithmetic mean proved to be independent of the time record length, while for the power-law exponent both the arithmetic mean and the median are not influenced by the time averaging period. Another issue is a large difference in aerodynamic surface roughness length when calculating using the arithmetic mean and the median. This indicates that the more robust median is a more suitable parameter to determine the aerodynamic surface roughness length than the arithmetic mean value. Variations in velocity profiles at the same site during different wind periods are interesting because, in the engineering community, it has been commonly accepted that the aerodynamic characteristics at a particular site remain the same during various wind regimes.

Analysis of Wind Velocity Profile for Calculation of Wind Pressure on Greenhouse (온실의 풍압력 산정을 위한 풍속의 수직분포 분석)

  • Jung, Seung-Hyeon;Lee, Jong-Won;Lee, Si-Young;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.135-146
    • /
    • 2015
  • To provide the data necessary to determine the design wind speed for calculating the wind load acting on a greenhouse, we measured the wind speed below 10m height and analyzed the power law exponents at Buan and Gunwi. A wind speed greater than $5m{\cdot}s^{-1}$ is appropriate for calculating the power law exponent necessary to determine the wind speed distribution function according to height. We observed that the wind speed increased according to a power law function with increased height at Buan, showing a similar trend to the RDC and JGHA standards. Therefore, this result should be applied when determining the power law function for calculating the design wind speed of the greenhouse structure. The ordinary trend is that if terrain roughness increases the value of power law exponent also increases, but in the case of Gunwi the value of power law exponent was 0.06, which shows contrary value than that of the ordinary trend. This contrary trend was due to the elevations difference of 2m between tower installed and surrounding area, which cause contraction in streamline. The power law exponent started to decrease at 7 am, stopped decreasing and started to increase at 3 pm, and stopped increasing and remained constant at 12 pm at Buan. These changes correspond to the general change trends of the power law exponent. The calculated value of the shape parameter for Buan was 1.51, confirming that the wind characteristics at Buan, a reclaimed area near the coast, were similar to those of coastal areas in Jeju.

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

Wind characteristics of Typhoon Dujuan as measured at a 50m guyed mast

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to compare with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).

Establishment of The Wind Resource Database of Jejudo by Meteo-Statistical Analysis (기상통계분석에 의한 제주도 풍력자원 데이터베이스 구축)

  • Kim, Hyun-Goo;Jang, Mun-Seok;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.296-297
    • /
    • 2006
  • In order to support wind power development, the wind resource database of Jejudo has been established by meteo-statistical analysis on meteorological-mast measurements of KIER. Analysis processes contain correlation of monthly wind speed and power-law exponent among neighboring sites, Measure-Correlated-Predict for long-term correlation, classification of exposure category using satellite image and so forth. It is found that the monthly variations of wind speed and power-law exponent depend on seasonal winds and characterize wind system of Jejudo.

  • PDF

Analysis on Wind Profile Characteristics in a Sublayer of Atmospheric Boundary Layer over a Semi-Complex Terrain - LIDAR Remote Sensing Campaign at Pohang Accelerator Laboratory (준복잡지형 대기경계층 저층 풍속분포 특성분석 - 포항가속기 라이다 원격탐사 캠페인을 중심으로)

  • Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • The mean wind speed and turbulence intensity profiles in the atmospheric boundary layer were extracted from a LIDAR remote sensing campaign in order to apply for CFD validation. After considering the semi-steady state field data requirements to be used for CFD validation, a neutral atmosphere campaign period, in which the main wind direction and the power-law exponent of the wind profile were constantly maintained, was chosen. The campaign site at the Pohang Accelerator Laboratory, surrounded by 40~50m high hills, with an apartment district spread beyond the hills, is to be classified as a semi-complex terrain. Nevertheless, wind speed profiles measured up to 100m above the ground fitted well into a theoretical-experimental logarithmic-law equation. The LIDAR remote-sensing data of the sub-layer of the atmospheric boundary layer has been proven to be superior to the data obtained by conventional extrapolation of the wind profile with 2 or 3 anemometer measurements.

Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.419-433
    • /
    • 2013
  • This paper investigates the vertical profiles of horizontal mean wind speed and direction based on the synchronized measurements from a Doppler radar profiler and an anemometer during 16 tropical cyclones at a coastal site in Hong Kong. The speed profiles with both open sea and hilly exposures were found to follow the log-law below a height of 500 m. Above this height, there was an additional wind speed shear in the profile for hilly upwind terrain. The fitting parameters with both the power-law and the log-law varied with wind strength. The direction profiles were also sensitive to local terrain setups and surrounding topographic features. For a uniform open sea terrain, wind direction veered logarithmically with height from the surface level up to the free atmospheric altitude of about 1200 m. The accumulated veering angle within the whole boundary layer was observed to be $30^{\circ}$. Mean wind direction under other terrain conditions also increased logarithmically with height above 500 m with a trend of rougher exposures corresponding to lager veering angles. A number of empirical parameters for engineering applications were presented, including the speed adjustment factors, power exponents of speed profiles, and veering angle, etc. The objective of this study aims to provide useful information on boundary layer wind characteristics for wind-resistant design of high-rise structures in coastal areas.

Global Distribution of Surface Layer Wind Speed for the years 2000-2009 Based on the NCEP Reanalysis (NCEP 재분석 자료를 이용한 전지구 지표층의 2000-2009년 풍속 분포)

  • Byon, Jae-Young;Choi, Young-Jean;Lee, Jae-Won
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • NCEP reanalysis data were analyzed in order to provide distribution of global wind resource and wind speed in the surface layer for the years 2000-2009. Wind speed at 10 m above ground level (AGL) was converted to wind speed at 80 m above the ground level using the power law. The global average 80 m wind speed shows a maximum value of $13ms^{-1}$ at the storm track region. High wind speed over the land exists in Tibet, Mongolia, Central North America, South Africa, Australia, and Argentina. Wind speed over the ocean increased with a large value in the South China Sea, Southeast Asia, East Sea of the Korea. Sea surface wind in Western Europe and Scandinavia are suitable for wind farm with a value of $7-8ms^{-1}$. Areas with great potential for wind farm are also found in Eastern and Western coastal region of North America. Sea surface wind in Southern Hemisphere shows larger values in the high latitude of South America, South Africa and Australia. The distribution of low-resolution reanalysis data represents general potential areas for wind power and can be used to provide information for high-resolution wind resource mapping.

Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR (지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석)

  • Kang, Dong-Bum;Huh, Jong-Chul;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.