• Title/Summary/Keyword: wind power generation

Search Result 919, Processing Time 0.03 seconds

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

A Study on the Applcation of Small Wind Power System using Meteorological Simulation Data in Pusan (기상수치모의 자료를 이용한 부산지역의 소형풍력발전 시스템 적용에 관한 연구)

  • Lee, KwiOk;Lee, KangYeol;Kang, Dongbae;Park, Changhyoun;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1085-1093
    • /
    • 2014
  • We investigate the amount of potential electricity energy generated by wind power in Busan metropolitan area, using the mesoscale meteorological model WRF (Weather Research & Forecasting), combined with small wind power generators. The WRF modeling has successfully simulated meteorological characteristics over the urban areas, and showed statistical significant to predict the amount of wind energy generation. The highest amount of wind power energy has been predicted at the coastal area, followed by at riverbank and upland, depending on predicted spatial distributions of wind speed. The electricity energy prediction method in this study is expected to be used for plans of wind farm constructions or the power supplies.

Effect of Artificial Noise from Offshore Wind Power Generation on Immunological Parameters in Rock Bream (Oplegnathus fasciatus) (돌돔(Oplegnathus fasciatus)에 대한 인위적인 해상풍력발전소 건설소음의 면역학적 영향)

  • Choi, Kwang-Min;Joo, Min-Soo;Kang, Gyoungsik;Woo, Won-Sik;Kim, Kyung Ho;Son, Min-Young;Jeong, Son Ha;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.243-248
    • /
    • 2021
  • Offshore wind power generation is an energy generation field that is rapidly developing owing to the increasing demand for clean energy. However, the physiological response of fish to the underwater noise generated during construction or operation of wind turbines is unclear. We confirmed the effects of sound pressures of 125, 135, 145, and 155 dB/µPa, including 140 dB/µPa (the standard sound pressure for noise damage recognition in South Korea), through serum analysis in rock bream (Oplegnathus fasciatus). High mortality induced by reduced immunity through artificial infection after stimulation was confirmed. These results suggest that rock bream is negatively affected by the noise generated during the construction of offshore wind power plants.

A Study on the Power Factor Improvement of V47-660 kW Wind Turbine Generation System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 역률개선에 관한 연구)

  • Kim, Eel-Hwan;Jeon, Young-Jin;Kim, Jeong-Woong;Kang, Geong-Bo;Huh, Jong-Chul;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a study on the power factor improvement of V47- 660 [kW] Wind Turbine Generation System (WTGS) in Jeju wind farm, as a model system in this paper. In this system, the power factor correction is controlled by the conventional method with power condensor banks. Also, this system has only four bank steps, and each one capacitor bank step is cut in every one second when the generator has been cut in. This means that it is difficult to compensate the reactive power exactly according to the variation of them. Actually, model system has very low power factor in the area of low wind speed, which is almost from 4 to 6 [m/s]. This is caused by the power factor correction using power condenser bank. To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter using IGBT switching device. Finally, to verify the proposed method, the results of computer simulation using Psim program are presented to support the discussions.

Performance of Wind-Photovoltaic Hybrid Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.319-324
    • /
    • 2005
  • This paper reports the performance of Wind-PV(Photovoltaic) hybrid system. The output power of PV is affected by the environmental factors such as solar radiation and cell temperature. Also, the output power of wind system is generated with wind power. Integration of Wind and PV resources, which are generally complementary, usually reduce the capacity of the battery. This paper includes discussion on system reliability, power quality and effects of the randomness of the wind and the solar radiation on system design.

A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms (풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

Optimal Efficiency Control of Induction Generators in Wind Energy Conversion Systems using Support Vector Regression

  • Lee, Dong-Choon;Abo-Khalil, Ahmed. G.
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 2008
  • In this paper, a novel loss minimization of an induction generator in wind energy generation systems is presented. The proposed algorithm is based on the flux level reduction, for which the generator d-axis current reference is estimated using support vector regression (SVR). Wind speed is employed as an input of the SVR and the samples of the generator d-axis current reference are used as output to train the SVR algorithm off-line. Data samples for wind speed and d-axis current are collected for the training process, which plots a relation of input and output. The predicted off-line function and the instantaneous wind speed are then used to determine the d-axis current reference. It is shown that the effect of loss minimization is more significant at low wind speed and the loss reduction is about to 40% at 4[m/s] wind speed. The validity of the proposed scheme has been verified by experimental results.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Generation Efficiency Characteristics of Small Wind Power for Green Energy Utilization (그린에너지 활용을 위한 소형풍력발전기의 효율 특성)

  • Lee, You-Seok;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • As the world-wide supply of fossil fuel sources decreases, the need for efficient energy conservation in addition to developing green energy technologies becomes critical. Wind energy is now regarded as one of the most rapidly expanding energy sources in the world. However, due to the high cost for the foundation of large turbines and the high wind speed (over 12 m/s) required, it is very difficult to establish inland wind power plants. In order to solve issues mentioned above, experiments were performed using the small wind power system operated in a low wind speed. In this research, inland wind condition was first analyzed, and 300 W and 1 kW small wind power generators were then installed on a roof and efficiencies of generating electricities were compared.