• Title/Summary/Keyword: wind net

Search Result 169, Processing Time 0.027 seconds

Integrated Water Resources Management in the Era of nGreat Transition

  • Ashkan Noori;Seyed Hossein Mohajeri;Milad Niroumand Jadidi;Amir Samadi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.34-34
    • /
    • 2023
  • The Chah-Nimeh reservoirs, which are a sort of natural lakes located in the border of Iran and Afghanistan, are the main drinking and agricultural water resources of Sistan arid region. Considering the occurrence of intense seasonal wind, locally known as levar wind, this study aims to explore the possibility to provide a TSM (Total Suspended Matter) monitoring model of Chah-Nimeh reservoirs using multi-temporal satellite images and in-situ wind speed data. The results show that a strong correlation between TSM concentration and wind speed are present. The developed empirical model indicated high performance in retrieving spatiotemporal distribution of the TSM concentration with R2=0.98 and RMSE=0.92g/m3. Following this observation, we also consider a machine learning-based model to predicts the average TSM using only wind speed. We connect our in-situ wind speed data to the TSM data generated from the inversion of multi-temporal satellite imagery to train a neural network based mode l(Wind2TSM-Net). Examining Wind2TSM-Net model indicates this model can retrieve the TSM accurately utilizing only wind speed (R2=0.88 and RMSE=1.97g/m3). Moreover, this results of this study show tha the TSM concentration can be estimated using only in situ wind speed data independent of the satellite images. Specifically, such model can supply a temporally persistent means of monitoring TSM that is not limited by the temporal resolution of imagery or the cloud cover problem in the optical remote sensing.

  • PDF

Full-scale study of wind loads on roof tiles and felt underlay and comparisons with design data

  • Robertson, A.P.;Hoxey, R.P.;Rideout, N.M.;Freathy, P.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.495-510
    • /
    • 2007
  • Wind pressure data have been collected on the tiled roof of a full-scale test house at Silsoe in the UK. The tiled roof was of conventional UK construction with a batten-space and bitumen-felt underlay beneath the interlocking concrete tiles. Pressures were monitored on the outer surface of selected tiles, at several locations within the batten-space, and beneath the underlay. Data were collected both with and without ventilator tiles installed on the roof. Little information appears to exist on the share of wind load between tiles and underlays which creates uncertainty in the design of both components. The present study has found that for the critical design case of maximum uplifts it would be appropriate to assign 85% of the net roof load to the tiles and 15% to the underlay when an internal pressure coefficient of -0.3 is used, and to assign 60% to the tiles and 50% to the underlay when an internal pressure coefficient of +0.2 is assumed (an element of design conservatism is inherent in the apparent 110% net loading indicated by the latter pair of percentage values). These findings indicate that compared with loads implied by BS 6399-2, UK design loads for underlay are currently conservative by 25% whilst tile loads are unconservative by around 20% in ridge and general regions and by around 45% in edge regions on average over roof slopes of $15^{\circ}-60^{\circ}$.

Analysis of wind field data surrounding nuclear power plants to improve the effectiveness of public protective measures

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Jeong Yeon Lee;Chae Hyun Lee;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3599-3616
    • /
    • 2023
  • After a nuclear power plant (NPP) accident, it would be helpful to predict the movement of the radioactive plume emitted from the NPP as accurately as possible to protect the nearby population. Radioactive plumes are mainly affected by wind direction and speed. Since it is difficult to identify the wind direction and speed immediately after the accident, a good understanding of the historical wind data could save many lives and ensure smoother evacuation procedures. In this study, wind data for the past 10 years are analyzed for the five NPPs in the Republic of Korea (ROK). The analyzed data include wind direction and wind speed from 2012 to 2021. In particular, the characteristics of the wind field blowing from the NPPs to the nearest densely populated regions are examined. Finally, suggestions to improve evacuation plans are made.

Characteristics of fishing condition variation of anchovy in the set net fishing ground of Anggang bay, korea (앵강만 정치망 어장의 멸치 어황변동 특성)

  • Lee, Gyu-Hyong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2012
  • In order to elucidate the mechanism of fishing condition variation of anchovy in the set net fisheries of Anggang Bay, the monthly catch of anchovy was analyzed and examined based on the data acquired from 2006 to 2010 in 13 different fishing grounds. Anchovy consistently appeared from April to December and reached the production of 840 to 1,424 t (average : 1,228 t), with a big annual variation. However, anchovy production in this area accounts for approximately 75% of the production by set net in Anggang Bay whereas it holds 6.8% of the nationwide production (=18,034 t) by set net. The school of anchovy starts to appear in April at the west mouth of the bay and move north-eastward. Afterward, having three of clockwise turns in the middle of the bay, they scatter to swim into the deep place of the bay and finally go out to turn back to their coming way. These behaviors of anchovy are likely related to thermal fronts as well as distributions of food. The production of anchovy (y, kg) relied greatly on frequencies of effective northeasterly ($x_1$) or northwesterly ($x_2$) wind (${\leq}$3.5m/s) which blow between April and June. Their relationships are as follows: $y=1086.27+21.499x_1-15.16x_2$ (r=0.901). Consequently, we concluded that the northeasterly wind, which appears in the breeding season of spring, played a role to retard the movement of anchovy school to the eastern sea, while the northwesterly wind inhibits the invasion of anchovy school into the bay.

The Optimal Microgrid Configuration Depending on the Change of Average Wind Speed and Fuel Cost (평균풍속 및 유가변동에 따른 최적 마이크로그리드 구성)

  • Kim, Kyu-Ho;Lim, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the optimal network configuration for electric stations using HOMER software. For the given data such as annual average wind speed and grid costs, this software calculates the NPC(Net Present Cost), operating cost and COE(Cost of Energy). Based on these simulation results, it is possible to find the optimal network configuration for electric stations depending on the grid cost and average wind speed. When the rising grid cost is considered, it is essential to use grid and renewable energy together. Depending on the increase of the grid cost, NPC of the configuration using renewable energy and grid can be gradually getting smaller than NPC of the configuration using only grid.

Seasonal Variability of Sonic Layer Depth in the Central Arabian Sea

  • Bhaskar, TVS Udaya;Swain, Debadatta;Ravichandran, M
    • Ocean Science Journal
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • The seasonal variability of sonic layer depth (SLD) in the central Arabian Sea (CAS) (0 to $25^{\circ}N$ and $62-66^{\circ}E$) was studied using the temperature and salinity (T/S) profiles from Argo floats for the years 2002-2006. The atmospheric forcing responsible for the observed changes was explored using the meteorological data from NCEP/NCAR and Quickscat winds. SLD was obtained from sound velocity profiles computed from T/S data. Net heat flux and wind forcing regulated SLD in the CAS. Up-welling and down-welling (Ekman dynamics) associated with the Findlater Jet controlled SLD during the summer monsoon. While in winter monsoon, cooling and convective mixing regulated SLD in the study region. Weak winds, high insolation and positive net heat flux lead to the formation of thin, warm and stratified sonic layer during pre and post summer monsoon periods, respectively.

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.607-617
    • /
    • 2019
  • Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

Wind Tunnel Evaluation of Aerodynamic Coefficients of Thuja occidentalis and Mesh Net (풍동실험을 통한 방풍용 서양측백나무와 농업용방풍망의 공기역학계수 평가)

  • Lee, Sojin;Ha, Taehwan;Seo, Siyoung;Song, Hosung;Woo, Saemee;Jang, Yuna;Jung, Minwoong;Jo, Gwanggon;Han, Dukwoo;Hwang, Okhwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.63-71
    • /
    • 2021
  • Windbreak forests, which have a windproof effect against strong winds, are known to be effective in reducing the spread of odors and dust emitted from livestock farms. The effect of reducing the spread of odors and dust can be estimated through numerical models such as computational fluid dynamics, which require aerodynamic coefficients of the windbreaks for accurate prediction of their performance. In this study, we aimed to evaluate the aerodynamic coefficients, Co, C1, C2, and α, of two windbreaks, Thuja occidentalis and a mesh net, through wind tunnel experiments. The aerodynamic coefficients were derived by the relation between the incoming wind speed and the pressure loss due to the windbreaks which was measured by differential pressure sensors. In order to estimate the change in the aerodynamic coefficient concerning various leaf density, the experiments were conducted repeatedly by removing the leaves gradually in various stages. The results showed that the power law regression model more suitable for coefficient evaluation compared to the Darcy-Forchheimer model.

Analysis of Economical efficiency for renewable energy in Steam Power Plant (신재생에너지 적용에 따른 화력발전 경제성분석)

  • Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • Since the Renewable Portfolio Standard (RPS) would be started in 2012, the use of renewable energy should be 11% of total energy use including bio-fuel in 2030. The economic efficiency for renewable energy in B power plant was considered with the bio-diesel, wind power and solar power. The Net Present Value (NPV) and Benefit/Cost Ratio(BC) were used for the economic efficiency with the cost and benefit analysis. In case of bio-diesel, the cost resulted from the fuel conversion and the benefit would be created with trade and environmental improvement. With regard to wind power and solar power, the construction cost would be required and benefit factors would be same as the bio-diesel. The wind power was the best of economic efficiency of renewable energy as the results of NPV and BC ratio. Whereas, the market of wind power was very popular and the techniques of wind power has been developing rapidly.

Analysis of the Legal Blind Sectors of the Large-Scale Offshore Wind Farms of Korea and Proposal to Improve Safety Management (대규모 해상풍력발전단지의 안전관리를 위한 법적 사각지대 분석 및 개선 제안)

  • Inchul Kim;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.127-138
    • /
    • 2023
  • A variety of decarbonized energy sources are being developed globally to realize carbon neutrality (Net Zero) by 2050 as a measure to address the global climate crisis. As the Korean government has also established a Renewable Energy 3020 policy and promoted energy development plans using solar or wind power, large-scale offshore development projects not present before in coastal waters, such as offshore wind farms, are being promoted. From ships' point of view, offshore facilities present obstacles to safe navigation, and with the installation of marine facilities, ship collisions or contact accidents between ships and marine facilities may occur in the narrowed water areas. In addition, there are concerns about environmental pollution and human casualties caused by marine accidents. Accordingly, we review overseas and domestic offshore wind farm development plans, analyze whether institutional devices are in place to ensure the safe passage of ships in wind farm areas, and study the safe operation of large-scale offshore wind farms and safe passage of ships along the Korean coast by comparing overseas legislative cases with domestic laws and presenting a proposal to illuminate the legal blind sectors.