• Title/Summary/Keyword: wind inclination angle

Search Result 20, Processing Time 0.02 seconds

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

FLOW-INDUCED FORCES ON AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더에 작용하는 유체력)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • Numerical investigation has been carried out for laminar flow past an inclined square cylinder in cross freestream. In particular, inclination of a square cylinder with respect to the main flow direction can cause sudden shift of the separation points to other edges, resulting in drastic change of flow-induced forces on the cylinder such as Strouhal number (St) of vortex shedding, drag and lift forces on the cylinder, depending upon the inclination angle. Collecting all the numerical results obtained, we propose contour diagrams of drag/lift coefficients and Strouhal number on an Re-Angle plane. This study would be the first step towards understanding flow-induced forces on cylindrical structures under a strong gust of wind from the viewpoint of wind hazards.

Yaw wind effect on flutter instability of four typical bridge decks

  • Zhu, Le-Dong;Xu, You-Lin;Guo, Zhenshan;Chang, Guang-Zhao;Tan, Xiao
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-343
    • /
    • 2013
  • When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields (교류전기장이 인가된 폴리에틸렌으로 피복된 기울어진 전선을 통해 하향으로 전파하는 화염에 대한 실험적 연구)

  • Lim, Seung Jae;Park, Jeong;Kim, Min Kuk;Chung, Suk Ho;Osamu, Fujita
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

Wind Engineering Study on the Surface-Pressure Characteristic of a Triangular Prism Located Behind a Porous Fence (다공성 방풍펜스 후방에 놓인 삼각프리즘의 표면압력특성에 관한 풍공학적 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1496-1508
    • /
    • 1997
  • The effects of porous wind fence on the pressure characteristics around a 2-dimensional prism model of triangular cross-section were investigated experimentally. The fence and prism model were embedded in a neutral atmospheric surface boundary layer over the city suburb. In this study, various fences of different porosity, back fence, inclination angle of prism and location of additional back prisms were tested to investigate their effects on the pressure and wall shear stress of the prism surface. The fence and prism had the same height of 40 mm and Reynolds number based on the model height was Re=3.9*10$^{4}$. The porous fence with porosity 40% was found to be the best wind fence for decreasing the mean and pressure fluctuations on the prism surface. By installing the fence of porosity 40%, the wall shear stress on the windward surface of prism was largely decreased up to 1/3 of that without the fence. This indicates that the porous fence is most effective to abate the wind erosion. Pressure fluctuations on the model surface were decreased more than half when a back fence was located behind the prism in addition to the front fence. With locating several back prisms and decreasing the inclination angle of triangular prism, the pressure fluctuations on the model surface were increased on the contrary.

A Study on the Sea Areas Dynamic Stability of LL-26(M) Light Buoy (LL-26(M) 등부표의 해역별 동적안정성에 관한 연구)

  • Moon, Beom-Sik;Gug, Seung-Gi;Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.166-173
    • /
    • 2020
  • AtoN Accident causes navigation dangerous to ships and reduces the credibility of aids to navigation. The most light buoys on the sea have the highest accident rate from the influence of sea weather such as wind, current, and waves. However, in Korea, despite the different sea weather conditions in each sea area, in calculating the dynamic stability of the light buoy, there is a problem that only limit value conditions are applied to all sea areas. Thus, the purpose of this study was to analyze the dynamic stability of the LL-26(M) light buoy, the most installed buoy of its kind on the sea and suggest a stable operation plan for the LL-26(M) light buoy. To achieve this, after analyzing the weather for each sea area of the previous study related to the light buoy, the dynamic stability (inclination angle) was estimated by applying to the representative light buoys of each sea area wherein the number of accidents caused by sea weather was high. As a result of this study, the inclination angle of LL-26(M) light buoy for each sea area was different. That is, the inclination angle caused by winds was 10.329°-36.868°, the inclination angle caused by currents was 0.123°-18.834° and the inclination angle caused by waves was 4.777°-20.695°. The results of study can be used as basic data useful for installation standards for each sea area for stable operation of the LL-26(M) light buoy.

A Study of the Slim Design of Overhead Transmission Tower (가공송전철탑 경량화 설계에 관한 연구)

  • Lee, Jung-Won;Lee, Won-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.560-565
    • /
    • 2010
  • This paper presents the design factor of an overhead transmission tower structure in order to reduce the tower weight. The behaviour of transmission tower structures are affected by the horizontal angle of the tower structure, the equivalent wind pressure group, the slope of the main post of the tower, the separation of the internode and the use of high-strength materials in their construction. Tower weight can be reduced by approximately 30% reduce weight by means of optimal design based on a consideration of all the above factors. In addition, the design of the foundation of the tower with the shear key installation to increase horizontal support together with a modified angle of inclination to the ground can reduce by about 37% the amount of concrete used during construction. The area of ground disturbed by the construction of the tower foundation can thus be reduced by approximately 33%. Therefore it is possible to build an environmently-friendly T/L tower with the mechanical properties of existing towers.

NUMERICAL STUDY OF FLOW PATTERNS PAST AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더를 지나는 유동패턴의 수치해석적 연구)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo;Choi, Choon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.19-24
    • /
    • 2009
  • A parametric study has been carried out to elucidate the characteristics of flow past a square cylinder inclined with respect to the main flow for Re$\leq$150. Reynolds number and angle of incidence are the key parameters which determine the flow characteristics. This study would be the first step towards understanding flow pattern past a cylindrical structure under a strong gust of wind from the viewpoint of wind hazards. A complete classification of flow pattern has been obtained in the laminar region.

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.