• Title/Summary/Keyword: wind hazard

Search Result 117, Processing Time 0.024 seconds

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • Raza, Iliyas;Choi, Hyun-Min;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF

Dust and sandstorm: ecosystem perspectives on dryland hazards in Northeast Asia: a review

  • Kang, Sinkyu;Lee, Sang Hun;Cho, Nanghyun;Aggossou, Casmir;Chun, Jungwha
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.228-236
    • /
    • 2021
  • Background: A review of the literature was carried out to study dust and sandstorm (DSS) in terms of its ecosystem processes and relationship to other dryland disasters in Northeast Asia. Drylands are ecosystems that include grasslands, semi-deserts, and deserts, and these types of ecosystems are vulnerable due to their low primary productivity that depends on a small amount of precipitation. Results: Drought, dust, desertification, and winter livestock disasters (called dzud) are unique natural disasters that affect the region. These disasters are related in that they share major causes, such as dryness and low vegetation cover that combine with other conditions, wind, cold waves, livestock, and land-surface energy, to dramatically impact the ecosystem. Conclusions: The literature review in this study illustrates the macroscopic context of the spatial and temporal patterns of DSS according to geography, climate, and vegetation growth in the drylands of Northeast Asia. The effects of ocean climates and human activities were discussed to infer a possible teleconnection effect of DSS and its relations to desertification and dzud.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Estimating Tree Shape Ratio by Region for Pinus Densiflora and Larix Kaempferi in Korea (우리나라 소나무 및 일본잎갈나무의 지역별 형상비 추정)

  • Kang, Jin-Taek;Ko, Chi-Ung;Yim, Jong-Su;Lee, Sun-Jeoung;Moon, Ga-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.600-609
    • /
    • 2019
  • This study was conducted to highlight the necessity for a stand density control management plan in consideration of the shape ratio of Pinus densiflora and Larix kaempferi in Korea. A total of 2,112 Pinus densiflora samples and 2,030 Larix kaempferi samples were cut, and their diameter at breast height (DBH), height, and clear length were measured for regional shape ratio (height/DBH) comparison and analysis.The shape ratio of Pinus densiflora was 72.3% in the Gangwon district, 64.0% in the central district, and 70.8% on average, indicating a higher percentage of Pinus densiflora in Gangwon than in the central area. Regionally, Yeongju had the highest percentage at 78.4%, with Yeongwol indicating 77.5%. Measured by diameter, results showed a presence of 90.4% for small diameter trees (6-16 cm), 71.7% for medium diameter trees (18-28 cm), and 56.1% for large diameter trees (30 cm). As density increased, the shape ratio of height to tree trunk diameter also increased; below 70% indicated a more stable trunk, while a result above 80% indicated trunks prone to wind hazards and snowstorms, and, therefore, the need for density control in partial areas. The overall shape ratio of Larix kaempferi was 90.6%. Pyeongchang indicated a 108.5% ratio, Yeongju 105.4%, and Danyang 100.5%, respectively.According to diameter class, small diameter trees showed 104.9% occurrence, medium diameter trees 92.7%, and large diameter trees 73.4%. The shape ratio of Larix kaempferi was higher than 80% overall, indicating vulnerability to wind hazards and snowstorms. Therefore, appropriate stand density management is required.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Comparison of Airborne Asbestos Concentrations from Soils in Naturally Occurring Asbestos(NOA) Areas - Activity Based Sampling(ABS) vs. Real-time Asbestos Fiber Monitor(F-1 fiber monitor) - (자연발생석면지역의 토양 내 석면함유율에 따른 비산석면 농도평가 - 활동근거시료채취방법(ABS)과 실시간 섬유 측정 장치(F-1 fiber monitor) 결과 비교 -)

  • Jang, Kwangmyung;Park, Kyunghoon;Choi, Sungwon;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.245-256
    • /
    • 2017
  • Objectives: The present study is aimed at performing real-time measurement of fibrous materials using an F-1 fiber monitor, investigating the correlations between the measurements and environmental conditions, and assessing the feasibility of the use of the monitor in actual exposure assessments based on the accuracy and reliability of the device. Methods: Asbestos specimens with a fixed asbestos content were dispersed in a chamber and collected with a particle measuring test device. Measurements obtained by the existing PCM method, and with the F-1 fiber monitor were compared. In addition, concentrations of asbestos fibers obtained by the PCM method, the TEM method, and the F-1 fiber monitor were compared with that of specific ABS scenarios in NOA regions. Correlations of asbestos contents in soil and weather conditions with each method of measurement were analyzed. Results: Laboratory results showed that levels of asbestos fibers measured with each method increased as fiber contents in soil increased. In the accuracy and reproducibility assessment, no significant differences were found between the different methods of measurement. On-site assessment results showed positive correlations among the methods, and these correlations were less significant compared with what was shown by the laboratory results. Levels of asbestos fibers increased as asbestos contents in soil increased, and as temperature increased. Levels of asbestos fibers decreased as humidity increased, and wind speed did not significantly affect the extent to which asbestos fibers were scattered. Conclusions: While it would be premature to replace existing methods with the use of F-1 fiber monitors in real sites based on the results of this study, the monitor may be useful in the screening of the sites, which assesses hazard levels in different regions. Replacement of existing methods with the use of F-1 fiber monitors may be possible after the limitations identified in this study are overcome, and additional assessment data are obtained and reviewed under different conditions to confirm the reliability of the monitor in future research. Obtained assessment results may be used as basic data for the assessment of asbestos hazard in NOA regions.

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.

Pilot Study on the Typhoon for the Meteorological Information Application and Disaster Prevention (기상정보 활용 및 방재를 위한 태풍 사례 연구)

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyo-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.21-28
    • /
    • 2007
  • It is very difficult to forecast accurately a damage from the natural disaster which occurs frequently due to the climate change. When the significant weather event is forecast, it will be able to minimize a damage with the suitable prevention action. But 2000's our country meterological disaster damage is a several trillion won. Therefore, this paper analyzes Korea Meterological Administration, Japan Meterological Agency, television and newspaper have reported, information substance, transmission system, an ex post facto valuation about typhoon Nabi between september $5{\sim}7$ in 2005 and heavy rainfall in 1998 at Japan. Through the investigation, we want to present basic data order to rises the application effect of disaster prevention meterological information. We think KMA must present many information report to promote a people's understanding about the meterological information and the serious disaster situation. Also the disaster damage estimation model development is necessary, which forecasts the accurate damage scale due to the weather event, such as typhoon, heavy rainfall, strong wind. And also we think the KMA, National Emergency Management Agency, related agency, television and newspaper must positive reports the contents which is suitable to disaster response phases and an ex post facto examination. Then it grasps the problem of disaster prevention meterological information and must improve effectively.

A Study on Analysis of Damaged Facilities in Rural Area by Storm and Flood Hazard (풍수해에 의한 농촌지역 피해시설 현황 분석)

  • Lim, Chang-Su;Oh, Yun-Kyung;Lee, Seung Chul;Kim, Eun-Ja;Choi, Jin-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Disasters that occur most frequently in rural areas are drought, flood, damages from wind and cold weather. Among these, damages from storm and flood and drought are the main disasters and recently, these are occurring on a large scale due to unusual weather conditions. Under such circumstances, projects and researches on disasters in rural areas are under way but they are mostly targeting one area or making approaches focusing on repair facilities, maintenance project of facilities in small streams, and disaster management, so there have not been enough studies on the current status of overall damaged facilities in the rural areas. Against this backdrop, through the analysis of the current status of damaged facilities due to storm and flood in rural areas, this study aims to provide base data for policies needed for disaster recovery planning and maintenance work of rural areas. For the analysis of damaged facilities due to storm and flood in rural areas, using the annual report on disasters issued by Ministry of Public Safety and Security and based on the occurrence rate of estimated damage in each city and district for the past 10 years(2004~2013), 8 areas with the highest number of occurrence and cost of damage were found from each province and target areas were selected. Then, regarding the selected target areas, the General Plan for Reducing Damages from Storm and Flood, which is the report on top-level plan for preventing disasters, was secured and the current status of damaged facilities were analyzed. After organizing the analysis of current status, the tendency of damaged facilities due to storm and flood in rural areas, the items of damaged facilities depending on the types of storm and flood damages, and risk factors were suggested. Based on this result, in order to generalize the results of follow-up researches, it is thought that disaster recovery planning and establishing the system of remodeling items necessary for maintenance work would be possible by analyzing damage investigation items recorded in additional researches on rural areas, researches on natural disasters, and recovery plan instructions and by conducting on-site investigation on the damaged villages from storm and flood in rural areas.

Investigation of Temperature Variation of Bridge Cables under Fire Hazard using Heat Transfer Analysis (열전달 해석을 통한 케이블교량 화재 시 케이블의 온도변화 분석)

  • Chung, Chulhun;Choi, Hyun Sung;Lee, Jungwhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.313-322
    • /
    • 2019
  • Recently, there have been frequent occurrences of bridge fires. Fires in cable-supported bridges can damage and brake cables due to high temperatures. In this study, fire scenarios that can occur on cable-supported bridges were set up. In addition, based on the results of vehicle fire tests, a fire intensity model was proposed and cable heat transfer analyses were performed on a target bridge. The analyses results demonstrated that temperature rises were identified on cables with a smaller cross-sectional area. Furthermore, vehicles other than tankers did not exceed the fire resistance criteria. When the tanker fire occurred on a bridge shoulder, the minimum diameter cable exceeded the fire resistance criteria; the height of the cable exceeding the fire resistance criteria was approximately 14 m from the surface. Therefore, the necessity of countermeasures and reinforcements of fire resistance was established. The results of this study confirmed that indirect evaluation of the temperature changes of bridge cables under fire is possible, and it was deemed necessary to further study the heat transfer analysis considering wind effects and the serviceability of the bridge when the cable temperature rises due to fire.