• Title/Summary/Keyword: wind field simulation

Search Result 376, Processing Time 0.025 seconds

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea (한반도 남동해안 해상풍 모의에 적합한 경계층 물리방안 연구)

  • Kim Yoo-Keun;Jeong Ju-Hee;Bae Joo-Hyun;Song Sang-Keun;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1015-1026
    • /
    • 2005
  • The southeastern coastal area of the Korean peninsula has a complex terrain including an irregular coastline and moderately high mountains. This implies that mesoscale circulations such as mountain-valley breeze and land-sea breeze can play an important role in wind field and ocean forcing. In this study, to improve the accuracy of complex coastal rind field(surface wind and sea surface wind), we carried out the sensitivity experiments based on PBL schemes in PSU/NCAR Mesoscale Model (MM5), which is being used in the operational system at Korea Meteorological Administration. Four widely used PBL parameterization schemes in sensitivity experiments were chosen: Medium-Range Forecast (MRF), High-resolution Blackadar, Eta, and Gayno-Seaman scheme. Thereafter, case(2004. 8. 26 - 8. 27) of weak-gradient flows was simulated, and the time series and the vertical profiles of the simulated wind speed and wind direction were compared with those of hourly surface observations (AWS, BUOY) and QuikSCAT data. In the simulated results, the strength of rind speed of all schemes was overestimated in complex coastal regions, while that of about four different schemes was underestimated in islands and over the sea. Sea surface wind using the Eta scheme showed the highest wind speed over the sea and its distribution was similar to the observational data. Horizontal distribution of the simulated wind direction was very similar to that of real observational data in case of all schemes. Simulated and observed vertical distribution of wind field was also similar under boundary layer(about 1 km), however the simulated wind speed was underestimated in upper layer.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Three Dimensional Computer Modeling of Magnetospheric Substorm

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1989
  • Magnetospheic substorm in the magnetotail region is studied numerically by means of a three dimensional MHD code. The analytic solution for the quiet magnetotail is employed as an initial configuration. The localized solar wind is modeled to enter the simulation domain through the boundaries located in the magnetotail lobe region. As a result of the interaction between the solar wind and the magnetosphere, the magnetic field lines are stretched, and the plasma sheet becomes thinner and thinner. When the current driven resistivity is generated, magnetic reconnection is triggered by this resistivity. The resulting plasma jetting is found to be super-magnetosonic. Although the plasmoid formation and its tailward motion is not quite clear as in the two dimensional simulation, which is mainly because of the numerical model chosen for the present simulation, the rarification of the plasmas near the x-point is observed. Field aligned currents are observed in the late expansive stage of the magnetospheric substorm. These field aligned currents flow from the tail toward the ionosphere on the dawn side from the ionosphere to ward the tail on the dusk side, namely in the same sense of the region 1 current. As the field aligned currents develop, it is found that the cross tail current in the earth side midnight section of the magnetic x-point is reduced.

  • PDF

Possibility of Wind Power Generation by a Vehicle-Induced Wind at the Median Strip on Hightway (주행차량에 의한 중앙분리대 유도풍의 풍력발전 활용 가능성)

  • Woo, Sang-Woo;Kim, Hyun-Goo;Jang, Moon-Seok;Shin, Hyung-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.315-317
    • /
    • 2008
  • The purpose of this study is to confirm the possibility of wind power generation by a vehicle-induced at the median strip on highway. In order to find out wind field information, a CFD method was used. According to the simulation results, the x, y, z-component of the wind velocity around a median strip are rapidly changed at near before and behind a moving vehicle. The x-component of the wind velocity appears high within the range of the length of the passing vehicle, and the wind direction appeared in the opposite direction at the behind of a vehicle. However, x and y-components of the wind velocity at the behind of vehicle are shown constantly. We confirmed possibility of wind power generation using a vehicle-induced wind at the median strip.

  • PDF

Estimation Method of Wind Resource Potential Using a National Wind Map (국가바람지도에 의한 풍력자원 잠재량 산출방법)

  • Kim, Hyun-Goo;Jang, M.S.;Kim, E.I.;Lee, H.W.;Lee, S.H.;Kim, D.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.332-333
    • /
    • 2008
  • This paper presents an estimation method of national wind resource potential using a national and GIS(Geographical Information System). The wind resource potential is classified into theoretical, geographical and technical potentials and each category narrows down the previous definition by excluding impossible area to be developed as a wind farm using GIS datasets for onshore and offshore. As a basic unit of wind energy potential at a certain area, API(Average Power Intercepted) is calculated from WPD(Wind Power Density) given by a national wind map which is established by numerical wind simulation, so that a logical and relatively accurate potential estimation is possible comparing with other methods based on a field measurement interpolation which is inevitable to avoid critical assumptions.

  • PDF

Updates to the wind tunnel method for determining design loads in ASCE 49-21

  • Gregory A. Kopp
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • The paper reviews and discusses the substantive changes to the ASCE 49-21 Standard, Wind Tunnel Testing for Buildings and Other Structures. The most significant changes are the requirements for wind field simulations that utilize (i) partial turbulence simulations, (ii) partial model simulations for the flow around building Appurtenances, along with requirements for determining wind loads on products that are used at multiple sites in various configurations. These modifications tend to have the effect of easing the precise scaling requirements for flow simulations because it is not generally possible to construct accurate models for small elements placed, for example, on large buildings at the scales typically available in boundary layer wind tunnels. Additional discussion is provided on changes to the Standard with respect to measurement accuracy and data acquisition parameters, such as duration of tests, which are also related to scaling requirements. Finally, research needs with respect to aerodynamic mechanisms are proposed, with the goal of improving the understanding of the role of turbulence on separated-reattaching flows on building surfaces in order to continue to improve the wind tunnel method for determining design wind loads.

Development of Simulation Method of Doppler Power Spectrum and Raw Time Series Signal Using Average Moments of Radar Wind Profiler (윈드프로파일러의 평균모멘트 값을 이용한 도플러 파워 스펙트럼 및 시계열 원시신호 시뮬레이션기법 개발)

  • Lee, Sang-Yun;Lee, Gyu-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1037-1044
    • /
    • 2020
  • Since radar wind profiler (RWP) provides wind field data with high time and space resolution in all weather conditions, their verification of the accuracy and quality is essential. The simultaneous wind measurement from rawinsonde is commonly used to evaluate wind vectors from RWP. In this study, the simulation algorithm which produces the spectrum and raw time series (I/Q) data from the average values of moments is presented as a step-by-step verification method for the signal processing algorithm. The possibility of the simulation algorithm was also confirmed through comparison with the raw data of LAP-3000. The Doppler power spectrum was generated by assuming the density function of the skew-normal distribution and by using the moment values as the parameter. The simulated spectrum was generated through random numbers. In addition, the coherent averaged I/Q data was generated by random phase and inverse discrete Fourier transform, and raw I/Q data was generated through the Dirichlet distribution.

CFD-DEM modeling of snowdrifts on stepped flat roofs

  • Zhao, Lei;Yu, Zhixiang;Zhu, Fu;Qi, Xin;Zhao, Shichun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.523-542
    • /
    • 2016
  • Snowdrift formation on roofs should be considered in snowy and windy areas to ensure the safety of buildings. Presently, the prediction of snowdrifts on roofs relies heavily on field measurements, wind tunnel tests and numerical simulations. In this paper, a new snowdrift modeling method by using CFD (Computational Fluid Dynamics) coupled with DEM (Discrete Element Method) is presented, including material parameters and particle size, collision parameters, particle numbers and input modes, boundary conditions of CFD, simulation time and inlet velocity, and coupling calculation process. Not only is the two-way coupling between wind and snow particles which includes the transient changes in snow surface topography, but also the cohesion and collision between snow particles are taken into account. The numerical method is applied to simulate the snowdrift on a typical stepped flat roof. The feasibility of using coupled CFD with DEM to study snowdrift is verified by comparing the simulation results with field measurement results on the snow depth distribution of the lower roof.

Evaluation and CFD Modelling of Flow behind Livestock Ventilation Fan for Small-Scale Wind Power Generation (축사 환기팬 후류의 풍에너지 평가 및 기류 형상의 전산유체역학 모델링)

  • Hong, Se-Woon;Lee, In-Bok;Seo, Il-Hwan;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Hwang, Hyun-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.79-89
    • /
    • 2012
  • The objectives of this paper were to evaluate the wind flow behind the livestock ventilation fan for small-scale wind power generation and to make flow profiles of imaginary ventilation fan for future simulation works. The field experiments using typical 50-inch fan indicated that the wind flow behind the ventilation fan had a good possibility of power generation with its high and steady wind speeds up to a distance of 2 m. The expected electricity yield was almost 101~369 W with a small (0.8 m radius) wind turbine. The decline of ventilation fan performance caused by the obstacle was also not significant with about 4 % from a distance of 2 m. The flow profiles for the computational fluid dynamics (CFD) simulation was created by combining the direction vectors analyzed from tuft visualization test and the flow predicted by the rotating fan modeling. The flow profiles are expected to provide an efficient saving of computational time and cost to design a better wind turbine system in future works.