• Title/Summary/Keyword: wind excitation

Search Result 217, Processing Time 0.029 seconds

Design of a Linear Mass Excitation System for Simulating Wind-induced Responses of a Building Structure (풍하중 구현 및 내풍특성 평가를 위한 선형질량 가진시스템 설계)

  • Park, Eun-Churn;Lee, Sang-Hyun;Min, Kyung-Won;Kang, Kyung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.661-668
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

Vortex excitation model. Part II. application to real structures and validation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.477-490
    • /
    • 2013
  • This paper presents results of calculations performed according to our own semi-empirical mathematical model of critical vortex excitation. All calculations are carried out using own computer program, which allows the simulation of both the across-wind action caused by vortices and the lateral response of analysed structures. Vortex excitation simulations were performed in real time taking into account wind-structure interaction. Several structures of circular cross-sections were modelled using a FEM program and calculated under the action of critical vortex excitation. Six steel chimneys, six concrete chimneys and two concrete towers were considered. The method of selection and estimation of the experimental parameters describing the model are also presented. Finally, the results concerning maximum lateral top displacements of the structures are compared with available full-scale data for steel and concrete chimneys.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.

Excitation System for Simulating Wind-induced Responses of a Building Structure using an Active Tuned Mass Damper (ATMD를 이용한 건축 구조물의 풍응답 구현을 위한 가진시스템)

  • Park, Eun-Churn;Lee, Sang-Hyun;Min, Kyung-Won;Kang, Kyung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.210-215
    • /
    • 2007
  • In this paper, excitation systems using an active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

  • PDF

Effect of a through-building gap on wind-induced loading and dynamic responses of a tall building

  • To, Alex P.;Lam, K.M.;Wong, S.Y.;Xie, Z.N.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.531-553
    • /
    • 2012
  • Many tall buildings possess through-building gaps at middle levels of the building elevation. Some of these floors are used as sky gardens, or refuge floors, through which wind can flow with limited blockage. It has been reported in the literature that through-building gaps can be effective in reducing across-wind excitation of tall buildings. This paper systematically examines the effectiveness of two configurations of a through-building gap, at the mid-height of a tall building, in reducing the wind-induced dynamic responses of the building. The two configurations differ in the pattern of through-building opening on the gap floor, one with opening through the central portion of the floor and the other with opening on the perimeter of the floor around a central core. Wind forces and moments on the building models were measured with a high-frequency force balance from which dynamic building responses were computed. The results show that both configurations of a through-building gap are effective in reducing the across-wind excitation with the one with opening around the perimeter of the floor being significantly more effective. Wind pressures were measured on the building faces with electronic pressure scanners to help understand the generation of wind excitation loading. The data suggest that the through-building gap reduces the fluctuating across-wind forces through a disturbance of the coherence and phase-alignment of vortex excitation.

Design of an actuator for simulating wind-induced response of a building structure

  • Park, Eun Churn;Lee, Sang-Hyun;Min, Kyung-Won;Chung, Lan;Lee, Sung-Kyung;Cho, Seung-Ho;Yu, Eunjong;Kang, Kyung-Soo
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • In this paper, excitation systems using a linear mass shaker (LMS) and an active tuned mass damper (ATMD) are presented to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop functions are used to prevent the actuator from exciting unexpected modal responses and an initial transient response and thus, to minimize the error between the wind and actuator induced responses. The analyses results from a 76-story benchmark building problem for which the wind load obtained by a wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately reproduce the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

Grid-Connected Dual Stator-Winding Induction Generator Wind Power System for Wide Wind Speed Ranges

  • Shi, Kai;Xu, Peifeng;Wan, Zengqiang;Bu, Feifei;Fang, Zhiming;Liu, Rongke;Zhao, Dean
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1455-1468
    • /
    • 2016
  • This paper presents a grid-connected dual stator-winding induction generator (DWIG) wind power system suitable for wide wind speed ranges. The parallel connection via a unidirectional diode between dc buses of both stator-winding sides is employed in this DWIG system, which can output a high dc voltage over wide wind speed ranges. Grid-connected inverters (GCIs) do not require booster converters; hence, the efficiency of wind energy utilization increases, and the hardware topology and control strategy of GCIs are simplified. In view of the particularities of the parallel topology and the adopted generator control strategy, we propose a novel excitation-capacitor optimization solution to reduce the volume and weight of the static excitation controller. When this excitation-capacitor optimization is carried out, the maximum power tracking problem is also considered. All the problems are resolved with the combined control of the DWIG and GCI. Experimental results on the platform of a 37 kW/600 V prototype show that the proposed DWIG wind power system can output a constant dc voltage over wide rotor speed ranges for grid-connected operations and that the proposed excitation optimization scheme is effective.

Operational Modal Analysis of a Wind Turbine Wing Using Acoustical Excitation (음향가진을 이용한 풍동터빈 날개의 운전형상 변형 분석)

  • Herlufsen, H.;Konstantin-Hansen, H.;Moller, N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.385.1-385
    • /
    • 2002
  • Operational Modal Analysis also known as Ambient Modal Analysis has an increasing interest in mechanical cngineering. Especially on big structures where the excitation and not less important the determination of the forces is most often a problem. In a structure like a wind turbine wing where the modes occur both close in frequency and bi-directional the Ambient excitation has big advantages. (omitted)

  • PDF

Design of an Adaptive Backstepping Speed Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the speed of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.

Design of an Excitation System for Simulating Wind-Induced Response and Evaluating Wind-load Resistance Characteristics (건축구조물의 풍하중 구현 및 풍특성 평가를 위한 가진시스템 설계)

  • Park, Eun-Churn;Lee, Sung-Kyung;Min, Kyung-Won;Chun, Lan;Kang, Kyung-Soo;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.769-778
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) and active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.