• 제목/요약/키워드: wind disaster

검색결과 388건 처리시간 0.028초

Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes

  • Ke, Shitang;Ge, Yaojun;Zhao, Lin;Tamura, Yukio
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.891-908
    • /
    • 2015
  • For a systematic study on wind-induced vibration characteristics of large hyperbolic cooling towers with different feature sizes, the pressure measurement tests are finished on the rigid body models of three representative cooling towers with the height of 155 m, 177 m and 215 m respectively. Combining the refined frequency-domain algorithm of wind-induced responses, the wind-induced average response, resonant response, background response, coupling response and wind vibration coefficients of large cooling towers with different feature sizes are obtained. Based on the calculating results, the parametric analysis on wind-induced vibration of cooling towers is carried out, e.g. the feature sizes, damping ratio and the interference effect of surrounding buildings. The discussion shows that the increase of feature sizes makes wind-induced average response and fluctuating response larger correspondingly, and the proportion of resonant response also gradually increased, but it has little effect on the wind vibration coefficient. The increase of damping ratio makes resonant response and the wind vibration coefficient decreases obviously, which brings about no effect on average response and background response. The interference effect of surrounding buildings makes the fluctuating response and wind vibration coefficient increased significantly, furthermore, the increase ranges of resonant response is greater than background response.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

재해통계기반 남해연안지역 풍랑피해액예측함수 제안 (Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics)

  • 추태호;윤관선;권용빈;박상진;김성률
    • 한국콘텐츠학회논문지
    • /
    • 제17권4호
    • /
    • pp.267-274
    • /
    • 2017
  • 태풍, 지진, 홍수, 폭우, 가뭄, 폭염, 풍랑, 쓰나미 등과 같은 자연재해는 발생지점과 규모를 예측하기 어려울 뿐만 아니라 인간생활에 피해를 주고 있다. 하지만, 재해통계를 기반으로 과거피해사례와 피해액을 분석하여 예상피해액을 산출할 수 있다면, 산출한 결과를 바탕으로 즉시 초동조치에 임할 수 있고, 피해를 최소한으로 저감할 수 있을 것이다. 따라서, 본 논문에서는 우리나라 남해연안지역을 대상으로 풍랑피해액예측함수를 제안한다. 본 예측함수는 재해연보('91년~'14년)에 기록된 풍랑 및 태풍의 재해통계, 남해연안지역의 특성을 고려한 인자, 해안 기상조건을 설명변수로 개발하였다.

A correlation-based analysis on wind-induced interference effects between two tall buildings

  • Xie, Z.N.;Gu, M.
    • Wind and Structures
    • /
    • 제8권3호
    • /
    • pp.163-178
    • /
    • 2005
  • Wind-induced mean and dynamic interference effects of tall buildings are studied in detail by a series of wind tunnel tests in this paper. Interference excitations of several types of upwind structures of different sizes in different upwind terrains are considered. Comprehensive interference characteristics are investigated by artificial neural networks and correlation analysis. Mechanism of the wakes vortex-induced resonance is discussed, too. Measured results show significant correlations exist in the distributions of the interference factors of different configurations and upwind terrains and, therefore, a series of relevant regression equations are proposed to simplify the complexity of the multi-parameter wind induced interference effects between two tall buildings.

초고층건물 화재시 외기바람이 배연성능에 미치는 영향 (The Influence of Wind Conditions on the Performance of Smoke Ventilation in High-rise Building Fires)

  • 김범규;임채현;박용환
    • 한국화재소방학회논문지
    • /
    • 제30권1호
    • /
    • pp.63-73
    • /
    • 2016
  • 본 논문은 초고층건물 화재 시 외기바람의 풍속, 풍향 조건이 기계배연시스템의 배연성능에 미치는 영향을 분석하였으며, 차원해석을 통한 축소모델 설계와 CFD 수치해석을 이용하여 영향을 정량적으로 평가하였다. 해석 결과, 축소모델의 외기풍속 5 m/s(실 외기풍속은 약 16 m/s), 풍향 ${\theta}=5^{\circ}$의 조건의 경우 배연풍속이 최대 약 17% 감소함을 보였으며, 외기풍향 각도 ${\theta}=25^{\circ}$ 이하의 조건에서는 기계배연시스템의 배출풍량을 크게 감소시켜 화재시 배연성능이 저하될 수 있는 것으로 평가되었다.

Ground effects on wind-induced responses of a closed box girder

  • Mao, Wenhao;Zhou, Zhiyong
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.397-413
    • /
    • 2017
  • When bridges are constructed with lower heights from the ground, the formed channel between the deck and the ground will inevitably hinder or accelerate the air flow. This in turn will have an impact on the aerodynamic forces on the deck, which may result in unexpected wind-induced responses of bridges. This phenomenon can be referred to "ground effects." So far, no systematic studies into ground effects on the wind-induced responses of closed box girders have been performed. In this paper, wind tunnel tests have been adopted to study the ground effects on the aerodynamic force coefficients and the wind-induced responses of a closed box girder. In correlation with the heights from the ground in two ground roughness, the aerodynamic force coefficients, the Strouhal number ($S_t$), the vortex-induced vibration (VIV) lock-in phenomena over a range of wind velocities, the VIV maximum amplitudes, the system torsional damping ratio, the flutter derivatives, the critical flutter wind speeds and their variation laws correlated with the heights from the ground of a closed box girder have been presented through wind tunnel tests. The outcomes show that the ground effects make the vortex-induced phenomena occur in advance and adversely affect the flutter stability.

Effect of rain on flutter derivatives of bridge decks

  • Gu, Ming;Xu, Shu-Zhuang
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.209-220
    • /
    • 2008
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. Many studies have been performed on the methods and applications of identification of flutter derivatives of bridge decks under wind action. In fact, strong wind, especially typhoon, is always accompanied by heavy rain. Then, what is the effect of rain on flutter derivatives and flutter critical wind speed of bridges? Unfortunately, there have been no studies on this subject. This paper makes an initial study on this problem. Covariance-driven Stochastic Subspace Identification (SSI in short) which is capable of estimating the flutter derivatives of bridge decks from their steady random responses is presented first. An experimental set-up is specially designed and manufactured to produce the conditions of rain and wind. Wind tunnel tests of a quasi-streamlined thin plate model are conducted under conditions of only wind action and simultaneous wind-rain action, respectively. The flutter derivatives are then extracted by the SSI method, and comparisons are made between the flutter derivatives under the two different conditions. The comparison results tentatively indicate that rain has non-trivial effects on flutter derivatives, especially on and $H_2$ and $A_2$thus the flutter critical wind speeds of bridges.

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

재해연보기반 남해연안지역 풍랑피해 예측함수 개발 (Development of the Wind Wave Damage Predicting Functions in southern sea based on Annual Disaster Reports)

  • 추태호;김영식;심상보;손종근
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.668-675
    • /
    • 2018
  • 전 세계적으로 도시화와 산업화의 발달은 많은 양의 전력을 필요로 하였다. 그리하여 연안 지역에 원자력 발전소를 비롯한 주요 사회기반시설의 건설이 가속화되었다. 또한 지구 온난화와 이상 기후 현상에 의해 자연 재해의 강도는 증가하고 있다. 자연 재해는 발생 지점과 규모를 예측하기 어렵고, 인명 피해와 재산 피해에 영향을 주고 있다. 이러한 문제로 인하여 연안 지역의 피해 예측과 재해 규모의 산정은 중요한 문제가 되었다. 그리하여 본 연구에서는 예측 가능한 기상 자료를 바탕으로 풍랑 피해의 피해액을 예측하고 예측한 결과를 바탕으로 풍랑 피해에 대하여 사전 대비 차원의 재난 관리가 가능할 것이라 판단된다. 본 연구에서는 재해 통계 자료가 부족한 시 군 구는 인접한 기상 관측소의 자료를 활용하는 지역은 군집분석을 활용하였다. 예측 가능한 기상자료와 지역 등급을 반영하였고, 재해 통계를 기반으로 남해연안지역의 풍랑 피해 예측함수를 개발 하였고, 검증 작업으로는 NRMSE를 활용하였다. 그 결과 NRMSE는 1.61%에서 21.73%로 분석되었다.