• Title/Summary/Keyword: wind disaster

Search Result 388, Processing Time 0.024 seconds

Vertical coherence functions of wind forces and influences on wind-induced responses of a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.;Ding, Q.S.
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.119-158
    • /
    • 2015
  • The characteristics of the coherence functions of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on the Shanghai World Trade Centre - a 492 m super-tall building with section varying along height are studied via a synchronous multi-pressure measurement of the rigid model in wind tunnel simulating of the turbulent, and the corresponding mathematical expressions are proposed there from. The investigations show that the mathematical expressions of coherence functions in across-wind and torsional-wind directions can be constructed by superimposition of a modified exponential decay function and a peak function caused by turbulent flow and vortex shedding respectively, while that in along-wind direction need only be constructed by the former, similar to that of wind speed. Moreover, an inductive analysis method is proposed to summarize the fitted parameters of the wind force coherence functions of every two measurement levels of altitudes. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well. Later, the influences of coherence functions on wind-induced dynamic responses are analyzed in detail based on the proposed mathematical expressions and the frequency-domain method of random vibration theory.

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.

Improved first-order method for estimating extreme wind pressure considering directionality for non-typhoon climates

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.473-482
    • /
    • 2020
  • The first-order method for estimating the extreme wind pressure on building envelopes with consideration of the directionality of wind speed and wind pressure is improved to enhance its computational efficiency. In this improved method, the result is obtained directly from the empirical distribution of a random selection of annual maximum wind pressure samples generated by a Monte Carlo method, rather than from the previously utilized extreme wind pressure probability distribution. A discussion of the relationship between the first- and full-order methods indicates that when extreme wind pressures in a non-typhoon climate with a high return period are estimated with consideration of directionality, using the relatively simple first-order method instead of the computationally intensive full-order method is reasonable. The validation of this reasonableness is equivalent to validating two assumptions to improve its computational efficiency: 1) The result obtained by the full-order method is conservative when the extreme wind pressure events among different sectors are independent. 2) The result obtained by the first-order method for a high return period is not significantly affected when the extreme wind speeds among the different sectors are assumed to be independent. These two assumptions are validated by examples in different regions and theoretical derivation.

Development of Estimation Functions for Strong Winds Damage Based on Regional Characteristics : Focused on Jeolla area (지역특성 기반의 강풍피해 예측함수 개발 : 전라지역을 중심으로)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 2020
  • Abnormal weather conditions have lately been occurring frequently due to the rapid economic development and global warming. Natural disasters classified as storm and flood damages such as heavy rain, typhoon, strong wind, high seas and heavy snow arouse large-scale human and material damages. To minimize damages, it is important to estimate the scale of damage before disasters occur. This study is intended to develop a strong wind damage estimation function to prepare for strong wind damage among various storm and flood disasters. The developed function reflects weather factors and regional characteristics based on the strong wind damage history found in the Natural Disaster Yearbook. When the function is applied to a system that collects real-time weather information, it can estimate the scale of damage in a short time. In addition, this function can be used as the grounds for disaster control policies of the national and local governments to minimize damages from strong wind.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

A comprehensive high Reynolds number effects simulation method for wind pressures on cooling tower models

  • Cheng, X.X.;Zhao, L.;Ge, Y.J.;Dong, J.;Demartino, C.
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.119-144
    • /
    • 2017
  • The traditional method for the simulation of high Reynolds number (Re) effects on wind loads on cooling tower models in wind tunnels focuses only on the mean wind pressure distribution. Based on observed effects of some key factors on static/dynamic flow characteristics around cooling towers, the study reported in this paper describes a comprehensive simulation method using both mean and fluctuating wind pressure distributions at high Re as simulation targets, which is indispensable for obtaining the complete full-scale wind effects in wind tunnels. After being presented in this paper using a case study, the proposed method is examined by comparing the full covariance matrices and the cross-spectral densities of the simulated cases with those of the full-scale case. Besides, the cooling tower's dynamic structural responses obtained using the simulated wind pressure fields are compared with those obtained by using the full-scale one. Through these works, the applicability and superiority of the proposed method is validated.

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong;Wang, Jingcheng;Gu, Ming
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.261-282
    • /
    • 2017
  • The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

Serviceability-oriented analytical design of isolated liquid damper for the wind-induced vibration control of high-rise buildings

  • Zhipeng Zhao;Xiuyan Hu;Cong Liao;Na Hong;Yuanchen Tang
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • The effectiveness of conventional tuned liquid dampers (TLDs) in controlling the wind-induced response of tall flexible structures has been indicated. However, the impaired control effect in the detuning condition or a considerably high mass cost of liquid may be incurred in ensuring the high-level serviceability. To provide an efficient TLD-based solution for wind-induced vibration control, this study proposes a serviceability-oriented optimal design method for isolated TLDs (ILDs) and derives analytical design formulae. The ILD is implemented by mounting the TLD on the linear isolators. Stochastic response analysis is performed for the ILD-equipped structure subjected to stochastic wind and white noise, and the results are considered to derive the closed-form responses. Correspondingly, an extensive parametric analysis is conducted to clarify a serviceability-oriented optimal design framework by incorporating the comfort demand. The obtained results show that the high-level serviceability demand can be satisfied by the ILD based on the proposed optimal design framework. Analytical design formulae can be preliminarily adopted to ensure the target serviceability demand while enhancing the structural displacement performance to increase the safety level. Compared with conventional TLD systems, the ILD exhibits higher effectiveness and a larger frequency bandwidth for wind-induced vibration control at a small mass ratio.

Effects of turbulence intensity and exterior geometry on across-wind aerodynamic damping of rectangular super-tall buildings

  • Quan, Y.;Cao, H.L.;Gu, M.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-209
    • /
    • 2016
  • Across-wind aerodynamic damping ratios are identified from the wind-induced acceleration responses of 15 aeroelastic models of rectangular super-high-rise buildings in various simulated wind conditions by using the random decrement technique. The influences of amplitude-dependent structural damping ratio and natural frequency on the estimation of the aerodynamic damping ratio are discussed and the identifying method for aerodynamic damping is improved at first. Based on these works, effects of turbulence intensity $I_u$, aspect ratio H/B, and side ratio B/D on the across-wind aerodynamic damping ratio are investigated. The results indicate that turbulence intensity and side ratio are the most important factors that affect across-wind aerodynamic damping ratio, whereas aspect ratio indirectly affects the aerodynamic damping ratio by changing the response amplitude. Furthermore, empirical aerodynamic damping functions are proposed to estimate aerodynamic damping ratios at low and high reduced speeds for rectangular super-high-rise buildings with an aspect ratio in the range of 5 to 10, a side ratio of 1/3 to 3, and turbulence intensity varying from 1.7% to 25%.