• Title/Summary/Keyword: wind design

Search Result 2,601, Processing Time 0.029 seconds

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions (대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구)

  • Kim, Kyong Hwan;Hong, Jang Pyo;Park, Sewan;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2016
  • The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.

Cyclic behavior of RT-cement treated marine clay subjected to low and high loading frequencies

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Mohamad, Hisham;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • The weakening and softening behavior of soft clay subjected to cyclic loading due to the build-up of excess pore water pressure is well-known. During the design stage of the foundation of highways and coastal high-rise buildings, it is important to study the mechanical behavior of marine soils under cyclic loading as they undergo greater settlement during cyclic loading than under static loading. Therefore, this research evaluates the cyclic stress-strain and shear strength of untreated and treated marine clay under the effects of wind, earthquake, and traffic loadings. A series of laboratory stress-controlled cyclic triaxial tests have been conducted on both untreated and treated marine clay using different effective confining pressures and a frequency of 0.5 and 1.0 Hz. In addition, treated samples were cured for 28 and 90 days and tested under a frequency of 2.0 Hz. The results revealed significant differences in the performance of treated marine clay samples than that of untreated samples under cyclic loading. The treated marine clay samples were able to stand up to 2000 loading cycles before failure, while untreated marine clay samples could not stand few loading cycles. The untreated marine clay displayed a higher permanent axial strain rate under cyclic loading than the treated clay due to the existence of new cementing compounds after the treatment with recycled tiles and low amount (2%) of cement. The effect of the effective confining pressure was found to be significant on untreated marine clay while its effect was not crucial for the treated samples cured for 90 days. Treated samples cured for 90 days performed better under cyclic loading than the ones cured for 28 days and this is due to the higher amount of cementitious compounds formed with time. The highest deformation was found at 0.5 Hz, which cannot be considered as a critical frequency since smaller frequencies were not used. Therefore, it is recommended to consider testing the treated marine clay using smaller frequencies than 0.5 Hz.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.

Field Survey and Analysis of Natural Ventilation Characteristics of Multi-span Greenhouse with Different Roof Vent (연동형 비닐하우스의 환기창 형태 조사 및 자연환기 효과 분석)

  • Park, Min jung;Choi, Duck kyu;Son, Jin kwan;Yoon, Sung-Wook;Kim, Hee tae;Lee, Seung-Kee;Kang, Dong hyeon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • The objectives of this study were to investigate the standard and roof vent type of multi-span greenhouse and to analyze the characteristics of natural ventilation of multi-span greenhouse with different roof vent using computational fluid dynamics (CFD) code. The vent area proportion of surveyed farms averaged 10%, it was analyzed that the vent design for natural ventilation is insufficient. The results of natural ventilation efficiency of multi-span greenhouse according to roof vent type showed that the temperature of the position in which the crops grew was the lowest in the conical roof vent type and the highest in the half conical roof vent type. For the natural ventilation effect, the conical roof vent type was the best one, but the structural stability should be evaluated in light of wind load.

Decision Supprot System fr Arrival/Departure of Ships in Port by using Enhanced Genetic Programming (개선된 유전적 프로그래밍 기법을 이용한 선박 입출항 의사결정 지원 시스템)

  • Lee, Kyung-Ho;Yeun, Yun-Seog;Rhee, Wook
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.117-127
    • /
    • 2001
  • The Main object of this research is directed to LG Oil company harbor in kwangyang-hang, where various ships ranging from 300 ton to 48000ton DWT use seven berths in the harbor. This harbor suffered from inefficient and unsafe management procedures since it is difficult to set guidelines for arrival and departure of ships according to the weather conditions and the current guidelines dose not offer clear basis of its implications. Therefore, it has long been suggested that these guidelines should be improved. This paper proposes a decision-support system, which can quantitatively decide the possibility of entry or departure on a harbor by analyzing the weather conditions (wind, current, and wave) and taking account of factors such as harbor characteristics, ship characteristics, weight condition, and operator characteristics. This system has been verified using 5$_{th}$ and 7$_{th}$ berth in Kwangyang-hang harbor. Machine learning technique using genetic programming(GP) is introduced to the system to quantitatively decide and produce results about the possibility of entry or arrival, and weighted linear associative memory (WLAM) method is also used to reduce the amount of calculation the GP has to perform. Group of additive genetic programming trees (GAGPT) is also used to improve learning performance by making it easy to find global optimum.mum.

  • PDF

A numerical study on effects of thermal buoyance force on number of jet fans for smoke control (도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • Jet fans are installed in road tunnels in order to maintain critical velocity when fire occurs. Generally the number of jet fans against fire are calculated by considering critical velocity and flow resistance by wall friction, vehicle drag force, thermal buoyance force and natural wind. In domestic case, thermal buoyance force is not considered in estimating the number of jet fans. So, in this study, we investigated the pressure loss due to the thermal buoyance force induced by tunnel air temperature rise and the impact of thermal buoyance force on the number of jet fans by the numerical fire simulation for the tunnel length(500, 750, 1000, 1500, 2000, 3500m) and grade (-1.0, -1.5, -2.0%). Considering the thermal buoyance force, number of jet fans have to be increased. Especially in the case of 100MW of heat release rate, the pressure loss due to thermal buoyance force exceed the maximum pressure loss due to vehicle drag resistance, so it is analyzed that number of 2~11 jet fans are needed additionally than current design criteria. Thus, in case of estimating the number of jet fans, it must be considered of thermal buoyance force induced tunnel air temperature rise by fire.

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Fault Location Estimation Algorithm in the Railway High Voltage Distribution Lines Using Flow Technique (반복계산법을 이용한 철도고압배전계통의 고장점표정 알고리즘)

  • Park, Kye-In;Chang, Sang-Hoon;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • High voltage distribution lines in the electric railway system placed according track with communication lines and signal equipments. Case of the over head lines is occurrence the many fault because lightning, rainstorm, damage from the sea wind and so on. According this fault caused protection device to wrong operation. One line ground fault that occurs most frequently in railway high voltage distribution lines and sort of faults is line short, three line ground breaking of a wire, and so on. For this reason we need precise maintenance for prevent of the faults. The most important is early detection and fast restoration in time of fault for a safety transit. In order to develop an advanced fault location device for 22.9[kV] distribution power network in electric railway system this paper deals with new fault locating algorithm using flow technique which enable to determine the location of the fault accurately. To demonstrate its superiorities, the case studies with the algorithm and the fault analysis using PSCAD/EMTDC (Power System Computer Aided Design/Electro Magnetic Transients DC Analysis Program) were carried out with the models of direct-grounded 22.9[kV] distribution network which is supposed to be the grounding method for electric railway system in Korea.

A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road (도로용 압전발전체 시험모듈 설계를 위한 기초 실험 연구)

  • Lee, Jae-Jun;Ryu, Seung-Ki;Moon, Hak-Yong;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 2011
  • Green house gas emissions are increasing as development of the industrial economy of the international community. Many countries in the world are endeavoring to reduce green house gas emissions under severe climate change. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-firendly industries such as renewable energy harvesting. Renewable energy has been rapidly developing as a result of investment for development technology of using natural energy such as solar, wind, tidal, etc. There are lots of waste energy in the road space. However, nobody is not interested in waste energy from the road space. This paper present a fundamentally experimental study of energy harvesting technique to use waste energy in the road. The waste energy in the road is covered a pressure and impact of vehicles on the road, the radiant heat from asphalt pavement, road noise and vibration etc. In this study, an energy harvesting device using piezoelectric element is proposed and various tests are conducted to investigate a characteristic of this device as function of impact loading based on piezoelectric effect behavior. This paper shows the energy harvesting results of the device using domestic piezoelectirc element as a function of impact load size and pavement types.