• Title/Summary/Keyword: wind deflector

Search Result 17, Processing Time 0.025 seconds

Wind Deflector Design of Spoiler Sunroof by Boundary Theory (경계층 이론에 의한 스포일러 선루프의 윈드 디플렉터 설계)

  • Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.17-22
    • /
    • 2006
  • Sunroof is getting widely used in automobiles since it maintains, compare to window, better air circulation as well as less noise while driving in high speed. In this study, we consider an electronic control type spoiler sunroof which slides backward after tilting a rear part of a glass. Installing a wind deflector on the sunroof reduces noise much more effectively. The height of the wind deflector is designed using a boundary theory related to incompressible air layer. The developed wind deflector is investigated experimentally by measuring a wind noise. When the height of the wind deflector is designed by a fixed type, the sunroof maintains a very quiet interior noise over a certain driving speed, nevertheless it produces relatively loud noise in low driving speed.

  • PDF

Sunroof Wind Noise Reduction Using Automatic Noise Measurement and Analysis System (자동 소음 계측 및 분석 장치를 이용한 자동차 썬루프 윈드노이즈 저감 기술 개발)

  • Shin, Seong-Ryong;Kim, Heung-Ki;Jung, Seung-Gyoon;Kook, Hyung-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.166-169
    • /
    • 2005
  • The best sunroof wind noise quality is mainly related to the sunroof deflector which affects both low-speed buffeting and high-speed aerodynamic noise. An automatic deflector-moving and noise-measuring apparatus is developed to obtain hundreds of measuring data which haven't been available by hand. With an additional program for fast and easy noise analysis, this device leads quickly to the better position and angle of the deflector. Now, the 'better' means the lower noise level and the robuster design solution. From these kinds of better solutions, more meaningful guidelines on the deflector design and sunroof wind noise reduction can be suggested.

  • PDF

Analysis of flow characteristics around the sunroof opening variation with sunroof deflector angle (썬루프 디플렉터 각도에 따른 썬루프 개구부 주변 유동 특성 연구)

  • Lee, Sung Won;Shin, Seongryong;Choi, Eui Sung;Yi, Juwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2018
  • In the present study, flow characteristics and wind noises around the sunroof opening are analyzed variation with panoramic sunroof deflector angle. A mesh deflector is attached to reduce wind noise while a car is driving with the panoramic sunroof opening. A new forward inclined type deflector was invented to improve wind noise. The effect of this new concept of mesh deflector on the open-panoramic flow characteristics and wind noises were studied with CAT (Computer Aided Test) and wind tunnel test, which shows the reduction of open-panoramic wind noises such as sunroof buffeting, sunroof booming, and turbulent noise. Therefore, the forward inclined type deflector can efficiently improve wind noise with the same production cost.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

Study of Flow Characteristics behind a Sunroof Wind Deflector for Wind Noise Reduction (바람소리 저감을 위한 선루프 디플렉터 주위의 유동에 관한 연구)

  • Lee, Dug-Young;Yoon, Jong-Hwan;Shin, Jae-Hyuk;Kim, Sang-Kon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.182-189
    • /
    • 2009
  • The noise from the sunroof can be divided into the low frequency buffeting noise and the high frequency turbulence noise generated when a car runs at the high driving speed. The wind deflector suppresses the buffeting noise generation by accelerating the vortex shedding from the front edge of sunroof opening, and guides the flow direction so that air can pass smoothly over the sunroof opening. To reduce the buffeting noise and the high frequency noise, it is very important to locate a deflector in a proper position depending on the driving speed and the sunroof opening width. The deflector's sectional shape also plays an important role in efficiently reducing the buffeting and high frequency noise. In this paper, we determined the optimum deflector's sectional shape and examined the flow characteristics behind a sunroof deflector through CFD analysis with changing the deflector height, the driving speed and the sunroof opening width. It is found that the deflector needs to be located in the higher location to control the buffeting noise by shedding the higher frequency vortices to accelerating vortices from the sunroof front edge. The deflector may act as a new noise source at the high driving speed, then it is desirable to put the deflector at the proper height to reduce the flow fluctuations and the noise generation. We also made a road test to verify CFD analysis results in this study.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

A Convergent Study on Flow Analysis near Trailer due to Shape of Wind Deflector (윈드 디플렉터 형상에 따른 트레일러 주위의 유동해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.159-163
    • /
    • 2020
  • In this study, the flow analyses around according to the existence or non- existence of the trailer's deflector and the shapes were carried out. In the absence of a deflector, the kinetic energy of the turbulence behind the container also generates higher kinetic energy in a wider area than in the presence of a deflector, which adversely affects the vehicle's driving performance. As a trailer's wind deflector-free model has unstable flow rates around the trailer and high kinetic energy of turbulence than a model with a deflector, it can be thought that the increase of fuel economy can be expected by installing a deflector in the trailer. By applying the study result on flow analysis near trailer due to shape of wind deflector, this study is seen to be suitable for the aesthetic convergence.

Aerodynamic characteristics of KSR-Ⅲ and jet impingement on a deflector during launch (KSR-Ⅲ 공력특성 및 발사화염 충돌유동에 대한 연구)

  • Kim, In-Seon;Ra, Seung-Ho;Ok, Ho-Nam;Choe, Seong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.98-107
    • /
    • 2002
  • An experimental and numerical study of aerodynamic charateristics of KSR-III and jet impingement on a deflector during launch has been conducted. To investigate aerodynamic characteristics of KSR-III configuration, wind tunnel tests using 6.4% scale model were performed by 4x4 feet ADD trisonic wind tunnel on the Mach number range of 0.4~3.8. Solutions of Three dimensional Euler equations were also obtained and compared with test result. For the study of KSR-III jet impingement flowfield on a deflector during launch operation, unsteady computation using CFD-FASTRAN was performed.

Experimental study on the drag reduction of a helmet for paragliding (패러글라이딩 헬멧의 항력 감소에 관한 실험적 연구)

  • Hwang, Jongbin;Park, Jungmok;Song, Jinseok;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.46-53
    • /
    • 2021
  • In the present study, wind tunnel experiments were performed to reduce the drag of a paragliding helmet in the range of Reynolds numbers from 46,000 to 155,000. The drag force of the helmet model with dimples and deflectors installed was measured by varying the dimple depth and the slant angle of the deflector. The dimples were effective in reducing the drag at low Reynolds numbers, but no significant drag reduction was found in the Reynolds number range in which an actual paraglider flight takes place. On the other hand, the deflector installed tangentially to the side outline of the helmet showed an average drag reduction of 7% in the flight Reynolds number range of real paragliding. This was because the deflector shrunk the size of the wake region and moved the wake region downstream of the deflector.

A Convergent Investigation on the Air flow in Driving According to a Cargo Container and the Wind Deflector (트럭 화물칸 및 윈드 디플렉터에 따른 운행중 공기흐름에 대한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.175-180
    • /
    • 2020
  • In this study, the freight vehicles were modelled and the flow analysis on the existence or non-existence of a cargo container and the wind deflector were carried out. Based on the driving speed of 100 km/hr, at all models A, B and C, the highest flow rate was shown between 58 m/s and 59 m/s at the top of the model shape. All models A, B and C showed the highest pressure of air resistance between 652Pa and 671Pa at the front of the model geometry. The maximum pressure of model A is considered to be the smallest, with the least flow resistance to speed compared to models B and C. Therefore, it can be seen that model A has an advantageous condition for air resistance in terms of fuel costs. Unlike model B which causes the rapid flow resistance at the cargo compartment, model C can be found to flow a little more smoothly on the streamlined wind deflector. So, the flow air at a streamlined shape is considered to be more advantageous in terms of air resistance than at angular shape. By applying the research analysis result on the air flow in driving according to a cargo container and the wind deflector, it is seen that this study is adequate at the practical efficient design and aesthetic convergence.