• Title/Summary/Keyword: wind comfort

Search Result 129, Processing Time 0.023 seconds

Embossed Structural Skin for Tall Buildings

  • Song, Jin Young;Lee, Donghun;Erikson, James;Hao, Jianming;Wu, Teng;Kim, Bonghwan
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • This paper explores the function of a structural skin with an embossed surface applicable to use for tall building structures. The major diagrid system with a secondary embossed surface structure provides an enhanced perimeter structural system by increasing tube section areas and reduces aerodynamic loads by disorienting major organized structure of winds. A parametric study used to investigate an optimized configuration of the embossed structure revealed that the embossed structure has a structural advantage in stiffening the structure, reducing lateral drift to 90% compared to a non-embossed diagrid baseline model, and results of wind load analysis using computational fluid dynamics, demonstrated the proposed embossed system can reduce. The resulting undulating embossed skin geometry presents both opportunities for incorporating versatile interior environments as well as unique challenges for daylighting and thermal control of the envelope. Solar and thermal control requires multiple daylighting solutions to address each local façade surface condition in order to reduce energy loads and meet occupant comfort standards. These findings illustrate that although more complex in geometry, architects and engineers can produce tall buildings that have less impact on our environment by utilizing structural forms that reduce structural steel needed for stiffening, thus reducing embodied $CO^2$, while positively affecting indoor quality and energy performance, all possible while creating a unique urban iconography derived from the performance of building skin.

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

Distress of the Patients with Ostomy (장루보유자의 불편함)

  • Oh, Eun-Hee;Hong, Sung-Jung;Mo, Moon-Hee;Woo, Mi-Young;Kim, Sun-Ju;Chung, Bok-Yae
    • Asian Oncology Nursing
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • Purpose: The purpose of this study was to explore and describe the distress of the patients with ostomy. Methods: A descriptive research design was adopted for data collection and analysis. Six patients with ostomy participated in the study. The consent from the participants was obtained for ethical protection. Data were collected from July 31, 2009 to January 10, 2010 using in-depth interview technique. Krippendorff's content analysis method was utilized for data analysis. Results: Eight categories and 26 themes were extracted from the data which illustrated the lived distress of the patients with ostomy. The categories were "do not have any freedom to eat whatever I wish to eat", "uncontrolled defecation"tomy", "can not live with comfort", "easily take a pessimistic view", and "see how the wind blows in daily family life". Conclusion: Ostomates were affected by the distress of having an ostomy in their physical, psychological, social and spiritual life. Individualized and continued nursing education program has to be developed in hospital and community settings in order to improve the quality of life of the ostomates.

Investigation of the required performance to develop a performance-based indicator for balcony window systems in apartment houses (공동주택 발코니 창호의 성능기반지표 개발을 위한 요구성능 조사)

  • Moon, Hyeun-Jun;Ryu, Seung-Ho;Yang, Gi-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.102-107
    • /
    • 2009
  • Window system is an essential component for lighting, ventilation and thermal environment in buildings. Moreover, as balcony extension in apartment houses become legalized, the performance requirements of window systems in balcony space are getting complicated. However, at this moment, five properties of the windows are used to represent the performance aspects of the system, including wind resistance, air tightness, water tightness, sound insulation, thermal resistance. And such single properties are not capable to express the performance of a space with the window systems in terms of performance concept. A performance analysis with wholistic approach is required to see the effect of the window system in built environment. Thus, performance-based approach should be established, which will be able to evaluate the goal/function and comfort of occupants/owners. As the first step to develop the performance indicator for the window systme for balcony space, this study conducts a survey to find the required performance aspects. A complete set of performance-based indicators will be developed with verification methods in the later stage of research.

  • PDF

A Study on Thermal Comfortable Following the Thermal Environment Migration in Detached Housing Area (열환경 완화를 통한 주택지내 쾌적성 확보에 관한 연구)

  • Ryu, Ji-Won;Jung, Eung-Ho;Hoyano, Akira;Kim, Dae-Wuk
    • Journal of the Korean housing association
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • This study aims to improve the thermal comfort level of detached housing area by reducing the impact of thermal environment. The study focused on reducing surface temperature that is generated in buildings and adjacent spaces as a result of sensible heat load and presented a proposal on implementing planting method considering its outdoor condition and structure and composed materials. To perform the study, we utilized 3D-CAD to examine the outdoor condition and structure and composed materials that impact on surface temperature and conducted space design after reflecting climatic elements in simulations. The result is as follows. In reviewing temperature distribution of Heat Island Potential (HIP) of buildings and adjacent spaces, in case where green coverage ratio is increased, there was a $6^{\circ}C$ temperature difference and in regard to changes in the thermal environment in detached housing area, in case where rooftop planting, surface improvement, planting, and overall green coverage ratio is increased, there was a $10^{\circ}C$ temperature difference. In addition, there was difference in temperature in detached housing area following the changes in wind.

An integrated structural health monitoring system for the Xijiang high-speed railway arch bridge

  • He, Xu-hui;Shi, Kang;Wu, Teng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.611-621
    • /
    • 2018
  • Compared with the highway bridges, the relatively higher requirement on the safety and comfort of vehicle makes the high-speed railway (HSR) bridges need to present enhanced dynamic performance. To this end, installing a health monitor system (HMS) on selected key HSR bridges has been widely applied. Typically, the HSR takes fully enclosed operation model and its skylight time is very short, which means that it is not easy to operate the acquisition devices and download data on site. However, current HMS usually involves manual operations, which makes it inconvenient to be used for the HSR. Hence, a HMS named DASP-MTS (Data Acquisition and Signal Processing - Monitoring Test System) that integrates the internet, cloud computing (CC) and virtual instrument (VI) techniques, is developed in this study. DASP-MTS can realize data acquisition and transmission automatically. Furthermore, the acquired data can be timely shared with experts from various locations to deal with the unexpected events. The system works in a Browser/Server frame so that users at any places can obtain real-time data and assess the health situation without installing any software. The developed integrated HMS has been applied to the Xijiang high-speed railway arch bridge. Preliminary analysis results are presented to demonstrate the efficacy of the DASP-MTS as applied to the HSR bridges. This study will provide a reference to design the HMS for other similar bridges.

Evaluation of Thermal Comfort for the Sensible Wind based on HRV & EEG Spectrum Analysis (생리신호 분석을 통한 감성기류의 온열쾌적성 평가)

  • 이낙범;임재중;금종수;임금식;최호선;이구형
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.94-98
    • /
    • 1998
  • 최근 온열 환경에서 인간의 쾌적감에 대한 관심이 커지고 있다. 온열쾌적감에 영향을 주는 요인들로는 온도, 습도, 기류 둥의 물리적 요인과 성별이나 체질 둥의 개인적인 요인들 뿐만 아니라 온열환경에서 느끼는 인간의 감성적인 측면도 요인으로 작용하게 된다. 본 연구에서는 여러가지 온열 환경 중에서 기류환경에 따른 인간의 온열 쾌적감을 평가하기 위해 생체반응의 변화 및 감성의 변화에 따른 생리신호를 분석을 통해 살펴보았다. 기류환경은 기존에 사용되고 있는 풍향변화기류 및 풍량변화기류와 새롭게 개발되어진 감성기류의 3가지 기류 조건을 제시하였고, 이에 따른 인체의 자율신경계의 반응과 감성 상태를 관찰하기 위해 심전도(ECG)와 뇌파(EEC)를 측정하여 HRV(Heart Rate Variability) 분석과 EEG 주파수 스펙트럼 분석을 시행하였다. 생리신호 분석결과 심전도의 HRV 분석에서는 감성기류가 풍향변화 기류와 풍속변화기류에 비해 HF/LF 비가 높게 나타났고, 뇌파의 주파수 스펙트럼 분석에서도 $\beta$파에 대한 뇌파의 상대 전력비가 감성기류에서 높게 나타나 감성기류가 제시된 다른 기류인 풍향변화기류나 풍속변화기류에 비해 쾌적한 온열환경 제시를 위한 기류조건이라고 평가되었다. 결론적으로 심전도의 HRV분석과 뇌파의 주파수 분석이 .제시된 기류환경의 온열쾌적감 평가에서 서로 유의한 결과를 나타냄으로써, 이들 생리신호의 분석이 온열환경에 따른 인간의 감성 변화를 객관적으로 나타내고 온열 쾌적감을 평가하는데 있어 유용한 정보가 될 수 있음을 제시하였다.

  • PDF

Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy (생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF