• Title/Summary/Keyword: wind comfort

Search Result 129, Processing Time 0.021 seconds

Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: generic sub-configuration validation, wind comfort assessment and uncertainty issues

  • Blocken, B.;Carmeliet, J.
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.51-70
    • /
    • 2008
  • CFD is applied to evaluate pedestrian wind comfort at outdoor platforms in a high-rise apartment building. Model validation is focused on generic building sub-configurations that are obtained by decomposition of the actual complex building geometry. The comfort study is performed during the design stage, which allows structural design changes to be made for wind comfort improvement. Preliminary simulations are performed to determine the effect of different design modifications. A full wind comfort assessment study is conducted for the final design. Structural remedial measures for this building, aimed at reducing pressure short-circuiting, appear to be successful in bringing the discomfort probability estimates down to acceptable levels. Finally, the importance of one of the main sources of uncertainty in this type of wind comfort studies is illustrated. It is shown that the uncertainty about the terrain roughness classification can strongly influence the outcome of wind comfort studies and can lead to wrong decisions. This problem is present to the same extent in both wind tunnel and CFD wind comfort studies when applying the same particular procedure for terrain relation contributions as used in this paper.

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.

Evaluating the impact of urban multifunctional walls on pedestrian wind comfort on street sidewalks (Case study: Tabriz city)

  • Parinaz Badamchizadeh;Paria Saadatjoo;Majid Ahmadlouydarab;Guoqiang Zhang
    • Wind and Structures
    • /
    • v.39 no.3
    • /
    • pp.223-242
    • /
    • 2024
  • Wind comfort in cold climates is one of the most essential factors for urban planners. This issue is particularly important for sidewalks that are in line with the prevailing wind flow and surrounded by high-rise buildings. Imam Street near the University Square in Tabriz is one of the passages that struggle with uncomfortable wind speeds. The aim of this study is to investigate the role of sidewalk walls on pedestrian wind comfort. These multifunctional walls not only serve as street furniture, but also reduce wind speed at pedestrian level. In this work, all simulations are performed using the RWIND tool and validated by wind tunnel experiments at the Architectural Institute of Japan. The main objective of this study is to evaluate the effects of the angle, height and spacing of the walls on wind attenuation at pedestrian level. The results show the effect of multifunctional walls on pedestrian-level wind mitigation. By rotating the windbreak walls from 0 to 60 degrees along the street, the average wind speed decreases by 30% to 46% compared to a situation without this type of wall. Increasing the wall height from 1.5 to 2 meters reduces the urban wind speed by 39-46%. However, increasing the distance between the sidewalk walls from 3.5-9.5 meters reduces the speed in the models from 46% to 32.7%. Finally, it has been demonstrated that sidewalk walls with a height of 2 meters, a rotation angle of 60° and a distance of 3.5 meters are the optimal choice for wind attenuation at pedestrian level.

A Study on Korean Pungsu as an Adaptive Strategy (환경 적응 전략으로서의 풍수지리 연구)

  • Ock, Han-Suk
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.5
    • /
    • pp.761-768
    • /
    • 2007
  • Humans have been searching for more comfortable places for centuries. The comfort concept which is related with vitality in Pungsu is closest to science. The comfort concept was introduced as being based upon measurable human physiological and psychological reactions. Two classification nomograms, the comfort index and the wind effect index were identified. The Pungsu concept can be applied in America, and one of them is North Cemetery located in the town of Hampton in northeastern Connecticut not far from Storrs campus, the University of Connecticut. The human reaction to comfort not only physiologically but also individually is various in various climate region. It is important to search for more comfortable places or to make up for less comfortable places with Pungsu as the adaptive strategy for the comfort.

Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration

  • Yu, Helu;Wang, Bin;Zhang, Guoqing;Li, Yongle;Chen, Xingyu
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • Long-span bridges with high flexibility and low structural damping are very susceptible to the vortex-induced vibration (VIV), which causes extremely negative impacts on the ride comfort of vehicles running on the bridges. To assess the ride comfort of vehicles running on the long-span bridges subjected to VIV, a coupled wind-vehicle-bridge system applicable to the VIV case is firstly developed in this paper. In this system, the equations of motion of the vehicles and the bridge subjected to VIV are established and coupled through the vehicle-bridge interaction. Based on the dynamic responses of the vehicles obtained by solving the coupled system, the ride comfort of the vehicles can be evaluated using the method given in ISO 2631-1. At last, the proposed framework is applied to several case studies, where a long-span suspension bridge and two types of vehicles are taken into account. The effects of vehicle speed, vehicle type, road roughness and vehicle number on the ride comfort are investigated.

Optimization of Wind Louver Angle By CFD Simulation

  • Piao, Gensong;Shon, Donghwa;Kim, Youngwoo;Lee, Jungwon;Choi, Jaepil
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • The objective of this study was to determine the optimal angle of a wind louver that would induce the optimal wind speed for indoor. Being controlled to have an optimized angle depending on the direction from which wind is blowing and the wind speed, the wind louver to be installed on the building envelop comes to create indoor comfort through a constant wind speed using the function that reduces the indoor wind speed by changing the angle when the wind speed is not lower than a certain level and makes wind flow into the room to the maximum when the wind direction is adverse to catching the wind or the wind speed is not higher than a certain level. To determine the optimal wind louver angle, a core-centered office building with cross-ventilation problems in the climate of Seoul, Korea, which experiences four distinct seasons, was considered for analysis in this study. A module 1 office space model was used for the CFD simulation to analyze the average indoor wind speed with respect to the outdoor wind speed (varied between 1 and 8 m/s), the wind louver angle, and the outdoor wind direction (varied between $0^{\circ}$ and $180^{\circ}$ in steps of $10^{\circ}$).

Interference Effects of Change in Wind Passage of a Building Group on Wind Loads and Wind Environments (건축물군의 바람길변화로 인한 풍하중 상호간섭 및 풍환경)

  • Cho, Kang-Pyo;Hong, Sung-Il;Kim, Mu-Hwan;Lee, Ok-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.402-409
    • /
    • 2008
  • Wind loads and environments in realistic situations surrounded by neighboring buildings may be considerably different from those in idealized or simplified situations such as codes and standards. Interference effects of change in wind passage of a building group on wind loads and wind environments are reviewed. Wind-induced interference effects depend mainly on the building geometry and arrangement of these structures, their orientation and upstream terrain conditions. The most important factor among them may be the arrangement of building structures which can change the wind direction directly. Interference effects regarding wind loads are discussed with examples of window damages by typhoon and of pressure measurements in the boundary layer wind tunnel. Wind environment problems are also discussed, specially underlined on pedestrian comfort and safety. Various evaluation techniques or standards of wind environment are introduced. The change of wind velocity between the panel-type apartment buildings is examined, depending on the distance each other.

  • PDF

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

Wind-Induced Motion of Tall Buildings: Designing for Occupant Comfort

  • Burton, M.D.;Kwok, K.C.S.;Abdelrazaq, A.
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • A team of researchers and practitioners were recently assembled to prepare a monograph on "Wind-Induced Motion of Tall Buildings: Designing for Habitability". This monograph presents a state-of-the-art report of occupant response to wind-induced building motion and acceptability criteria for wind-excited tall buildings. It provides background information on a range of pertinent subjects, including: ${\bullet}$ Physiological, psychological and behavioural traits of occupant response to wind-induced building motion; ${\bullet}$ A summary of investigations and findings of human response to real and simulated building motions based on field studies and motion simulator experiments; ${\bullet}$ A review of serviceability criteria to assess the acceptability of wind-induced building motion adopted by international and country-based standards organizations; ${\bullet}$ General acceptance guidelines of occupant response to wind-induced building motion based on peak acceleration thresholds; and ${\bullet}$ Mitigation strategies to reduce wind-induced building motion through structural optimization, aerodynamic treatment and vibration dissipation/absorption. This monograph is to be published by the American Society of Civil Engineers (ASCE) and equips building owners and tall building design professionals with a better understanding of the complex nature of occupant response to and acceptability of wind-induced building motion. This paper is a brief summary of the works reported in the monograph.