• Title/Summary/Keyword: wind barrier shelter

Search Result 4, Processing Time 0.015 seconds

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.

Wind tunnel tests on flow fields of full-scale railway wind barriers

  • Su, Yang;Xiang, Huoyue;Fang, Chen;Wang, Lei;Li, Yongle
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.171-184
    • /
    • 2017
  • The present study provides a deeper understanding of the flow fields of a full-scale railway wind barriers by means of a wind tunnel test. First, the drag forces of the three wind barriers were measured using a force sensor, and the drag force coefficients were compared with a similar scale model. On this basis, the mean wind velocity and turbulence upwind and downwind of the wind barriers were measured. The effects of pore size and opening forms of the wind barrier were discussed. The results show that the test of the scaled wind barrier model may be unsafe, and it is suitable to adopt the full-scale wind barrier model. The pore size and the opening forms of wind barriers have a slight influence on the flow fields upwind of the wind barrier but have some influences on the flow fields and power spectra downwind of the wind barrier. The smaller pore size generates a lower turbulence density and value of the power spectrum near the wind barrier, and the porous wind barriers clearly provide better shelter than the bar-type wind barriers.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

Experiment of the Shelter Effect of Porous Wind Fences base on the Wind Tunnel Test (풍동실험을 이용한 다공성 방풍팬스의 방풍성능실험)

  • You, Jang-Youl;Jeon, Jong-Gil;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.91-101
    • /
    • 2006
  • We have conducted the study about the shelter effect against the wind by using the wind fence with various porosities and the measured distance from the wind fence, in three different types of it ; (Circle wind fence, Vertical wind fence, Horizontal wind fence) The shelter effect and turbulence characteristics of the selected wind barrier is throughly investigated by wind tunnel test. flow characteristics of velocities and turbulences behind wind fence were measured using hot-wire anemometer. we characterize the turbulence behind the wind fence by varying the porosity of 0 %, 20 %, 40%, and 60%, and the distances from the wind fence from 1 H to 9 H with maintaining the uniform flow velocity of 6 m/s. In addition, we investigated the overall characterization of the wind fence by measuring total of twenty eight points on the wind fence, which forms the lattice structure on it with seven points in lateral direction and four points in vertical direction. The results of analysis from the circle wind fence indicate that the degree of the turbulence is lowered and the velocity of the wind is decreased when the porosity of 40 % are used at the distance from 3 H to 9 H. On the other hand, the vertical, horizontal wind fence with the porosity of 20% is more advantageous at the distance of 2 H to 9 H. For the effectiveness of the wind fence depending on the position, the center part is the greatest and it decreases at the edges with 10 % to 30 % less than that of at the center.

  • PDF