• 제목/요약/키워드: wind barrier

검색결과 61건 처리시간 0.02초

Aerodynamic parameters selection and windbreak mechanism of wind barrier for high-speed railway bridge

  • Yujing Wang;Weiwei Guo;He Xia;Qinghai Guan;Shaoqin Wang
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.411-425
    • /
    • 2024
  • To investigate the optimal aerodynamic parameters of wind barriers for the T-beam of high-speed railway (HSR) bridge and the wind field of the wind barrier-train-bridge system, the three-component forces of the system and the wind pressure on the vehicle surface were tested and analyzed through the sectional model wind test. The effects of wind velocity, with/without wind barrier, the height of wind barrier, and the air permeability of the wind barrier on the aerodynamic characteristics of the train-bridge system are discussed. Additionally, a CFD numerical model is constructed to evaluate the wind environment of the bridge surface with/without the wind barrier, and the impact of wind barrier on the running safety of vehicles are analyzed. Comprehensively considering the running safety of the train and the wind-resistant stability of the bridge, it is more appropriate to set the wind barrier height H as 3.5 m and the porosity 𝛽 as 30% respectively.

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

Wind tunnel tests on flow fields of full-scale railway wind barriers

  • Su, Yang;Xiang, Huoyue;Fang, Chen;Wang, Lei;Li, Yongle
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.171-184
    • /
    • 2017
  • The present study provides a deeper understanding of the flow fields of a full-scale railway wind barriers by means of a wind tunnel test. First, the drag forces of the three wind barriers were measured using a force sensor, and the drag force coefficients were compared with a similar scale model. On this basis, the mean wind velocity and turbulence upwind and downwind of the wind barriers were measured. The effects of pore size and opening forms of the wind barrier were discussed. The results show that the test of the scaled wind barrier model may be unsafe, and it is suitable to adopt the full-scale wind barrier model. The pore size and the opening forms of wind barriers have a slight influence on the flow fields upwind of the wind barrier but have some influences on the flow fields and power spectra downwind of the wind barrier. The smaller pore size generates a lower turbulence density and value of the power spectrum near the wind barrier, and the porous wind barriers clearly provide better shelter than the bar-type wind barriers.

Design criteria of wind barriers for traffic -Part 2: decision making process

  • Kim, Dong Hyawn;Kwon, Soon-Duck;Lee, Il Keun;Jo, Byung Wan
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.71-80
    • /
    • 2011
  • This study presents a decision making process for installation of wind barrier which is used to reduce the wind speed applied to running vehicles on expressway. To determine whether it is needed to install wind barrier or not, cost and benefit from wind barrier are calculated during lifetime. In obtaining car accidental risk, probabilistic distribution of wind speed, daily traffic volume, mixture ratio in the volume, and duration time for wind speed range are considered. It is recommended to install wind barrier if benefit from the barrier installation exceed construction cost. In the numerical examples, case studies were shown for risk and benefit calculation and main risky regions on Korean highway were all evaluated to identify the number of installation sites.

Reducing the wind pressure at the leading edge of a noise barrier

  • Han, Seong-Wook;Kim, Ho-Kyung;Park, Jun-Yong;Ahn, Sang Sup
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.185-196
    • /
    • 2020
  • A method to reduce the wind pressure at the leading edge of a noise barrier was investigated by gradually lowering the height of a member added to the end of the noise barrier. The shape of the lowered height of the added member was defined by its length and slope, and the optimal variable was determined in wind tunnel testing via the boundary-layer wind profile. The goal of the optimal shape was to reduce the wind pressure at the leading edge of the noise barrier to the level suggested in the Eurocode and to maintain the base-bending moment of the added member at the same level as the noise-barrier section. Using parametric wind tunnel investigation, an added member with a slope of 1:2 that protruded 1.2 times the height of the noise barrier was proposed. This added member is expected to simplify, or at least minimize, the types of column members required to equidistantly support both added members and noise barriers, which should thereby improve the safety and construction convenience of noise-barrier structures.

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

차량사고 위험도를 고려한 방풍벽 설치기준 (Decision Making Process for Wind Barrier Installation Considering Car Accident Risk)

  • 김동현;이일근;권순덕;조병완
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.17-26
    • /
    • 2010
  • 본 연구에서는 강풍에 의한 차량의 주행안정성 확보를 위해 설치하는 방풍벽의 설치기준을 제안하였다. 이를 위하여 먼저 차량전용해석 수단인 CarSim 및 TruckSim을 사용하여 풍속 및 차량속도에 따른 횡방향 이탈량을 계산하고, 이로부터 차종별 위험 풍속을 결정하였다. 그리고 방풍벽 설치 여부의 판단을 위해 방풍벽 설치로 인해 얻을 수 있는 사고위험과 주행편익 등을 생애주기 동안의 비용으로 환산하였다. 사고위험 계산을 위해 해당지역의 풍속확률분포, 일평균통행량, 차종별 혼입율 및 구간풍속 지속시간 등을 이용하였다. 방풍벽 설치 전과 후의 총 비용과 편익을 비교하여 방풍벽 설치로 인한 편익이 설치 비용보다 큰 경우 방풍벽을 설치하는 것으로 판정하였다. 수치해석을 통해 고속도로 상의 두 곳을 대상으로 방풍벽 설치 여부에 대한 판정을 수행하였다.

장벽 방전형 공기 펌프의 이온풍 발생에 미치는 방전전극 형상의 영향 (Effect of Discharge Electrode Shape of a Barrier Discharge Type Gas Pump on Ionic Wind Generation)

  • 황덕현;문재덕
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.994-998
    • /
    • 2009
  • Existing cooling technologies no longer provide adequate heat dissipation due to excessive heat generation caused by the growing component density on electronic devices. An ionic gas pump can be used for the thermal management of micro-electronic devices, since the size of pump can be reduced to a micrometer scale. In addition, the gas pump allows for gas flow control and generation without moving parts. This ideal property of gas pump gives rise to a variety of applications. However, all these applications require maximizing the wind velocity of gas pump. In this study a barrier discharge type gas pump, with a needle-shaped corona electrode instead of a plate-shaped corona electrode, has been investigated by focusing on the corona electrode shape on the wind velocity and wind generation yield. As a result, the enhanced wind velocity and wind generation yield of 1.76 and 3.37 times were obtained with the needle-shaped corona electrode as compared with the plate-shaped corona electrode of the proposed barrier discharge type gas pump.