• Title/Summary/Keyword: wind ash

Search Result 22, Processing Time 0.026 seconds

The Plastic Cracking Properties of Fly Ash Concrete with Various Curing Conditions (양생조건에 따른 플라이애쉬 콘크리트의 소성수축균열 특성)

  • Nam, Jae-Hyun;Park, Jong-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.91-98
    • /
    • 2007
  • In this study, the property and plastic cracking pattern of concrete were compared and analyzed with the replacement ratio of fly ash 0, 5, 10, 15, 20% by cement weight. And curing conditions of concrete were given variously such as indoors(with wind speed as 0, 300, 500m/min), outdoors and chamber. The hydration temperature had a tendency to decrease as the replacement ratio of fly ash increased, and in the case of the wind speed 0m/min, it was showed that the moment that the amount of evaporation of water from surface of reference concrete was more than the volume of bleeding was 90 min since casting concrete. The time that the crack initiated had a tendency to be more quickly as the replacement ratio of fly ash increased. The number, length, width and area of crack in the indoor curing, exposed outdoor curing, enclosed outdoor curing had a tendency to decrease as the replacement ratio of fly ash increased. The crack had a tendency to decrease in sequence of exposed outdoor, enclosed outdoor curing, indoors curing. The outbreak of cracking by the change of temperature and humidity was affected by relative humidity more than temperature and the cracking had a tendency to increase as relative humidity lowered.

Numerical Simulation of Volcanic Ash Dispersion and Deposition during 2011 Eruption of Mt. Kirishima (2011년 기리시마 화산 분화에 따른 화산재 이동 및 침적에 관한 수치모의실험)

  • Lee, Soon-Hwan;Jang, Eun-Suk;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.237-248
    • /
    • 2014
  • To analyze the characteristics of deposition and dispersion of volcanic ash emitted from Mt. Kirishima on January 26, 2011, several numerical simulations were carried out by using the numerical models including Weather and Research Forecast (WRF) and FLEXPART. The dispersion of ash located under 1 km high tends to be concentrated along the prevailing wind direction on January 26 2011. On the other hand, volcanic ash released on the following day spreads to Kirishima bay due to the intensified high pressure air mass in southern Kyushu. When Siberian air mass was intensified January 26, 2011, the deposition of volcanic ash is concentrated restrictedly in the narrow area along the wind direction of the downwind side of Mt. Kirishima. The development of high pressure air mass over the eruption area tends to induce the intensified horizontal diffusion of volcanic ash. Since the estimated deposition of volcanic ash is agreed well with observed values, the proposed numerical simulation is reasonable to use the assessment on the behavior of volcanic ash.

Volcanological Interpretation of Historic Record of 1702 Fallout-ash from the Mt. Baegdusan (백두산 화산의 1702년 강하화산재 기록에 대한 화산학적 해석)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • This study considers the historical eruption record in 1702 from the volcanological point of view, which is presumed to have occurred from Mt. Baegdusan volcano. The minium volume of erupted materials is estimated to be $1.2km^3$ when calculated with an empirical formula using an isopach line obtained from two points 140 km away from the vent. The 1702 eruption was a paroxysmal one with VEI of 5. The historical record described a deposition of wind-modified fallout ash by movement of hot ash cloud. To prepare for the future eruption, we have to analyze historical literatures and understand characteristics of volcano.

Prediction of Dispersal Directions and Ranges of Volcanic Ashes from the Possible Eruption of Mt. Baekdu

  • Lee, Seung-Yeon;Suh, Gil-Yong;Park, Soo-Yeon;Kim, Yeon-Su;Nam, Jong-Hyun;Yu, Seung-Hyun;Park, Ji-Hoon;Kim, Sang-Jik;Kim, Yong-Sun;Park, Sun-Yong;Yun, Ja-Young;Jang, Yu-Jin;Min, Se-Won;Noh, So-Jung;Kim, Sung-Chul;Lee, Kyo-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • To predict the influence of volcano eruption on agriculture in South Korea we evaluated the dispersal ranges of the volcanic ashes toward the South Korea based on the possibilities of volcano eruption in Mt. Baekdu. The possibilities of volcano eruption in Mt. Baekdu have been still being intensified by the signals including magmatic unrest of the volcano and the frequency of volcanic earthquakes swarm, the horizontal displacement and vertical uplift around the Mt. Baekdu, the temperature rises of hot springs, high ratios of $N_2/O_2$ and $_3He/_4He$ in volcanic gases. The dispersal direction and ranges and the predicted amount of volcanic ash can be significantly influenced by Volcanic Explosivity Index (VEI) and the trend of seasonal wind. The prediction of volcanic ash dispersion by the model showed that the ash cloud extended to Ulleung Island and Japan within 9 hours and 24 hours by the northwestern monsoon wind in winter while the ash cloud extended to northern side by the south-east monsoon wind during June and September. However, the ash cloud may extent to Seoul and southwest coast within 9 hours and 15 hours by northern wind in winter, leading to severe ash deposits over the whole area of South Korea, although the thickness of the ash deposits generally decreases exponentially with increasing distance from a volcano. In case of VEI 7, the ash deposits of Daejeon and Gangneung are $1.31{\times}10^4g\;m^{-2}$ and $1.80{\times}10^5g\;m^{-2}$, respectively. In addition, ash particles may compact close together after they fall to the ground, resulting in increase of the bulk density that can alter the soil physical and chemical properties detrimental to agricultural practices and crop growth.

A Study on Response Characteristics of Photoelectric Type Smoke Detector Chamber Due to Dust and Wind Velocity (분진 및 풍속에 따른 광전식연기감지기 챔버의 응답특성에 관한 연구)

  • Lee, Chun-Ha;Lee, Ho-Sung;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • The present article discusses the response characteristics of smoke detector chamber due to dust and wind velocity. Although situations have improved in terms of early sensing of fires as the smoke detectors are applied indoors, studies tend to place insufficient focus on the side effects and malfunction that can be caused by diversified life dust produced indoors and environmental requirements, etc. Therefore, in the present study, 4 types of photoelectric smoke detectors with different forms and structures of smoke chamber were selected as the experimental objects, and dust test was conducted with fly ash, talcum powder and fiber dust as experiment samples to study indoor applicability of the smoke detectors in terms of their response to diversified dust and wind velocity. Also, to observe response characteristics due to pollution level inside the smoke chamber, wind velocity for dust test were set additionally at 0.25 m/s, 0.5 m/s, and 1.0 m/s. Based to the experimental results, fly ash, talcum powder, and fiber dust (black hair powder) were found to be suitable at the dust test reference wind velocity conditions of 0.25 m/s for both operation test and non-operation test after dust application. On the other hand, under the harsh wind velocity conditions of 0.5 m/s and 1.0 m/s, malfunction of unwanted alarm was observed in non-operation tests in the case of fly ash and talcum powder, and non-operation was confirmed to occur in the case of fiber dust as the alarm failed to operate normally in operation tests.

Modelsfor Disaster Prevention Education and Training and Scenario for Training on Volcanic Ash Fall (재난재해 교육, 대응훈련 모델과 화산재 대비 훈련 시나리오)

  • Chang, Eunmi;Park, Yongjae;Park, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.97-113
    • /
    • 2018
  • Low-frequency geological natural disaster events such as Pohang earthquake have been occurred. As a results, there's a growing recognition on the importance of education and training for low frequency geological disasters in Korea. In spite of many years of scientific researches on volcanic disaster prevention and preparedness on Baekdusan volcano, the results do not provide the proper scenario for the training for volcanic ash event. Fall 3D volcanic ash diffusion model was run based on wind field data for the last five year, assuming Aso Mountain's explosion with volcanic explosion index 5 for seventy two hours. The management criteria values for proper actions in the previous studies were applied to make a scenario for thirteen groups of the disaster response teams such as train transportation, water supply, electrical facilities and human health. The models on the relationship between education and training for disaster prevention and response were suggested to fulfill the scientific and practical training at local level.

Volcanological Interpretation of Historic Record of Ash Cloud Movement from Mt. Baegdu Volcano on October 21, 1654 (백두산 화산의 1654년 10월 21일 화산재구름 이동 기록에 대한 화산학적 고찰)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The volcanic history of the volcanic ash cloud movement recorded in the annals of the Choson dynasty in 1654, presumably due to explosive eruptions from Mt. Baekdu volcano. On October 21, 1654, volcanic ash and volcanic gas erupted from Mt. Baekdu could be interpreted as volcanic ash, which was transported to low altitude by winds of north and northeast winds and descended to the south of the peninsula along with volcanic ash clouds. The affected area appeared northward in the southern boundary of Hamgyeongdo, which is estimated to have moved the volcanic ash from Mt. Baekdu to the south of the Korean peninsula. Clouds of volcanic ash have passed through Jeokseong and Jangdan area, Gyeonggido about 500 km away from Mt. Baekdu. This is interpreted as a result of the formation of a volcanic ash cloud along the ground in a curved shape due to the influence of the prevailing wind, which was formed by Plinian-type eruption at Mt. Baekdu. This is reproduced by numerical simulations on the similar weather pattern model.

Application of Chemical Dust Suppressants for Control of Fugitive Dust in Ash pond of Thermal Power Plant (화력발전소의 회처리장 내 비산먼지 저감을 위한 화학적 먼지억제제 적용 연구)

  • Choi, Yu-Lim;Choi, Jong-Soo;Yang, Jae-Kyu;Park, Sun-Hwan;Joo, Hyun Soo;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.82-89
    • /
    • 2018
  • The objective of this study is to evaluate efficiencies of chemical suppressants for control of fugitive dust in ash pond of thermal power plant. In this study, $MgCl_2$, PAM (polyacrylamide), and PVA (poly vinyl alcohol) that are generally applied to suppression of fugitive dust generated from unpaved road, coal mining, storage piles and etc, were employed as chemical dust suppressants. The coal ash (coal combustion residuals) were sampled from the ash pond of Yeongheung power division in Incheon, South Korea. The characterization of the sample including particle size distribution, pH, $pH_{PZC}$ and pore volume as well as XRF analysis were carried out. The suppressant treated-samples were investigated with the wind tunnel experiments to estimate and compare the effect of suppressants on stabilization of the surface of coal ash samples. According to the results, the stability of suppressant-treated samples were significantly improved compared to water-treated samples. Among the three kinds of suppressants, PAM and PVA showed higher efficiencies and cost saving than $MgCl_2$.

Damage and Socio-Economic Impact of Volcanic Ash (화산재 양에 따른 피해와 사회 · 경제적 영향 분석)

  • Jiang, Zhuhua;Yu, Soonyoung;Yoon, Seong-Min;Choi, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.536-549
    • /
    • 2013
  • This study investigates the damages of and analyzes the social and economic impacts of volcanic ash eruptions in the world in order to estimate the potential volcanic ash impacts in South Korea when Mt. Baekdusan volcano erupts in the future. First, we build a comparison chart called "the impact of volcanic ash" on each economic and social sector by using major volcanic eruptions and we compare the damage with respect to volcanic ash thickness/weights. Secondly, we analyze the social and economic impact from volcanic ash. The economic damage is not likely to occur in South Korea, unless Mt. Baekdusan erupts in winter. However, the potential damage should not be overlooked because the volcanic ash may have a global impact around the world. If Mt. Baekdusan volcano erupts when the wind blows from north or northeast, the volcanic ash may then significantly affect South Korea of which economy is highly dependent on exports. Particularly when the volcanic ash moves to the densely populated metropolitan areas or agricultural areas, the damage can be significant. In preparation for the potential volcanic disasters, the volcanic ash forecast table suitable for South Korea should be prepared. In addition, building a Korean volcanic ash hazard map in advance will have a strategic significance.

Waste Reuse in Sugar Industries

  • Ansari, Abdul Khalique
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.122-131
    • /
    • 2001
  • Pakistan being the 6$^{th}$ largest sugar producer has over 75 sugar mills with annual production capacity of about 2.4 million tons during 1996-97. The contribution of Sindh with 27 sugar mills is recorded over 50% of the total sugar production. The majority of the mills in Pakistan use the Defecation-Remelt-Phosphitation (DRP; 24 mills), Defecation-Remelt-Carbonation (DRC; 21 mills) and Defecation-Remelt Carbonation and Sulphitation (DRCS; 11 mills) process. Seven of the 75 sugar mills in Pakistan also produce industrial alcohol from molasses, a by- product of sugar manufacturing process. These sugar industries also produce fly ash, which have been found to contain unburned carbon and reach as far as four-kilo meter area with the wind direction, threatening the community health of people living around, besides posing other aesthetic problems. The untreated wastewater, in many cases, finds its way to open surface drains causing serious threat to livestock, flora and fauna. One study showed that fly ash emitted from the chimneys contain particle size ranging from 38 ${\mu}{\textrm}{m}$ to 1000 ${\mu}{\textrm}{m}$. About 50 per cent of each fly ash samples were above 300 ${\mu}{\textrm}{m}$ in size and were mostly unburned Carbon particles, which produced 85% weight loss on burning in air atmosphere at 1000${\mu}{\textrm}{m}$. This fly ash (mostly carbon) was the main cause of many health and aesthetic problems in the sugar mill vicinity. The environmental challenge for the local sugar mills is associated with liquid waste gaseous emission and solid waste. This paper discusses various waste recycling technologies and practices in sugar industries of Pakistan. The application of EM technology and Biogas technology has proved very successful in reusing the sugar industry wastewater and mud, which otherwise were going waste.

  • PDF