• Title/Summary/Keyword: wifi

Search Result 126, Processing Time 0.021 seconds

Transponder and Ground Station Systems for Drones

  • Kim, Ki-Su;Ha, Heon-Seong;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.9-15
    • /
    • 2020
  • In this paper, we propose a case that drone (unmanned aerial vehicle), one of the representative technologies of the 4th Industrial Revolution, threatens airport safety and privacy infringement, and describes a drone control system proposal to solve the problem. Unmanned aerial vehicle (Drone) is creating a serious problem recently, In Korea, on May 21, 19, according to the Jeju Regional Aviation Administration, drones flew over Jeju Jeongseok Airfield twice in the same month, causing problems in aircraft operation. In overseas cases, two drones near the runway of Gatwick International Airport in the UK There has been a disturbance in which the takeoff and landing of the aircraft flies for a while, and various problems have occurred, such as voyeuring the private life of an individual using a drone. This paper is equipped with an Acess Point transponder mounted on a drone (unmanned aerial vehicle), and unspecified many who want to receive flight information (coordinates, altitude, and obstacles) of the drone access the drone AP, receive and receive the flight information of the drone, and receive unspecified multiple Drone AP flight information is collected and collected to provide the information of the drone currently floating on one user interface screen. In addition, an AP transponder is proposed to operate a safe drone (unmanned aerial vehicle) and the drone's flight information is transmitted., To receive and collect and collect data.

Design of an Efficient Control System for Harbor Terminal based on the Commercial Network (상용망 기반의 항만터미널 효율적인 관제시스템 설계)

  • Kim, Yong-Ho;Ju, YoungKwan;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2018
  • The Seaborne Trade Volume accounts for 97% of the total. This means that the port operation management system can improve port efficiency, reducing operating costs, and the manager who manages all operations at the port needs to check and respond quickly when delays of work and equipment support is needed. Based on the real-time location information confirmation of yard automation equipment used the existing system GPS, the real-time location information confirmation system is a GPS system of the tablet, rather than a port operation system that monitors location information for the entered information, depending on the completion of the task or the start of the task. Network configurations also reduce container processing delays by using commercial LTE services that do not have shading due to containers in the yard also reduce container processing delays. Trough introduction of smart devices using Android or IOS and container processing scheduling utilizing artificial intelligence, we will build a minimum delay system with Smart Device usage of container processing applications and optimization of container processing schedule. The adoption of smart devices and the minimization of container processing delays utilizing artificial intelligence are expected to improve the quality of port services by confirming the processing containers in real time to consumers who are container information demanders.

Hiker Mobility Model and Mountain Distress Simulator for Location Estimation of Mountain Distress Victim (산악 조난자의 위치추정을 위한 이동성 모델 및 조난 시뮬레이터)

  • Kim, Hansol;Cho, Yongkyu;Jo, Changhyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • Currently police and fire departments use a Network/Wifi/GPS based emergency location positioning system established by mobile carriers to directly link with the device of the people who request the rescue to accurately position the expected location in the call area. However in the case of mountain rescue it is difficult to rescue the victim in golden time because the location of the search area cannot be limited when the victim is located in a radio shadow area of the mountain or the device power is off and this situation become worse if victim fail to report 911 by himself due to the injury. In this paper, we are expected to solve the previous problem by propose the mobile telecommunication forensic simulator consist of time series of cell information, human mobility model which include some general and specific features (age, gender, behavioral characteristics of victim, etc.) and intelligent infer system. The results of analysis appear in heatmap of polygons on the map based on the probability of the expected location information of the victim. With this technology we are expected to contribute to rapid and accurate lifesaving by reducing the search area of rescue team.

APPLICATION OF WIFI-BASED INDOOR LOCATION MONITORING SYSTEM FOR LABOR TRACKING IN CONSTRUCTION SITE - A CASE STUDY in Guangzhou MTR

  • Sunkyu Woo;Seongsu Jeong;Esmond Mok;Linyuan Xia;Muwook Pyeon;Joon Heo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.869-875
    • /
    • 2009
  • Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..

  • PDF

Comparison of Frequency and Stay Time between Normal and Abnormal Elimination Behavior of Cats Using a Litter Box with Automatic Sensor

  • Ji-Woo Shin;Sun-Woo Han;Soon-Hak Kweon;Myungseok Kang;Jong-Hyuk Kim;Chung-Gwang Choi;Joon-Seok Chae
    • Journal of Veterinary Clinics
    • /
    • v.41 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • Changes in elimination behavior, including urination and defecation, are common clinical signs of numerous disorders in cats. Therefore, this study attempted to automatically measure the elimination behavior of cats using the litter box and develop an early warning system for the guardian in case of abnormalities. To construct an early warning system for abnormal changes through cat elimination behavior, it consisted of a litter box, an automatic sensor for data collection and data wifi transmission, a server for data analysis, and a mobile phone app for result transmission and early warning. To establish the reference interval (RI), the elimination behavior was monitored for more than 2 weeks using a motion sensor within a litter box in 37 healthy cats and 19 diseased cats. The data were expressed as daily total visits, daily total stay duration, average stay duration per elimination, weekly total visits, and weekly total stay duration. Healthy cats showed median daily total visits of 3 times/day (RI 1.0-7.0) and daily total stay duration of 192 s/day (RI 8.0-452.0). For weekly data, the median total visits were 20 times/week (RI 3.0-35.25) and the median total stay duration was 1,147 s/week (RI 80.0-2,249.5). The average stay duration per elimination was 59 s/elimination (RI 4.67-132.0). Diseased cats showed more frequent elimination behavior than healthy cats (p < 0.001). Otherwise, for each elimination, diseased cats had shorter stay durations than healthy cats (p < 0.001). This study established the RIs of elimination behavior parameters (frequency and duration) in healthy cats. The present study might help guardians and veterinarians detect changes in elimination behaviors in diseased cats at an early stage.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.