• Title/Summary/Keyword: width of device

Search Result 715, Processing Time 0.026 seconds

The impact of substrate bias on the Z-RAM characteristics in n-channel junctionless MuGFETs (기판 전압이 n-채널 무접합 MuGFET 의 Z-RAM 특성에 미치는 영향)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1657-1662
    • /
    • 2014
  • In this paper, the impact of substrate bias($V_{BS}$) on the zero capacitor RAM(Z-RAM) in n-channel junctionless multiple gate MOSFET(MuGFET) has been analyzed experimentally. Junctionless transistors with fin width of 50nm and 1 fin exhibits a memory window of 0.34V and a sensing margin of $1.8{\times}10^4$ at $V_{DS}=3.5V$ and $V_{BS}=0V$. As the positive $V_{BS}$ is applied, the memory window and sensing margin were improved due to an increase of impact ionization. When $V_{BS}$ is increased from 0V to 10V, not only the memory window is increased from 0.34V to 0.96V but also sensing margin is increased slightly. The sensitivity of memory window with different $V_{BS}$ in junctionless transistor was larger than that of inversion-mode transistor. A retention time of junctionless transistor is better than that of inversion-mode transistor due to low Gate Induced Drain Leakage(GIDL) current. To evaluate the device reliability of Z-RAM, the shifts in the Set/Reset voltages and current were measured.

The Analysis of the Breakdown Voltage according to the Change of JTE Structures and Design Parameters of 4H-SiC Devices (4H-SiC 소자의 JTE 구조 및 설계 조건 변화에 따른 항복전압 분석)

  • Koo, Yoon-Mo;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.491-499
    • /
    • 2015
  • Silicon Carbide(SiC) has large advantage in high temperature and high voltage applications because of its high thermal conductivity and large band gap energy. When using SiC to design power semiconductor devices, edge termination techniques have to be adjusted for its maximum breakdown voltage characteristics. Many edge termination techniques have been proposed, and the most appropriate technique for SiC device is Junction Termination Extension(JTE). In this paper, the change of breakdown voltage efficiency ratio according to the change of doping concentration and passivation oxide charge of each JTE techniques is demonstrated. As a result, the maximum breakdown voltage ratio of Single Zone JTE(SZ-JTE), Double Zone JTE(DZ-JTE), Multiple Floating Zone JTE(MFZ-JTE), and Space Modulated JTE(SM-JTE) is 98.24%, 99.02%, 98.98%, 99.22% each. MFZ-JTE has the smallest and SZ-JTE has the largest sensitivity of breakdown voltage ratios according to the change of JTE doping concentration. Additionally the degradation of breakdown voltage due to the passivation oxide charge is analyzed, and the sensitivity is largest in SZ-JTE and smallest in MFZ-JTE, too. In this paper, DZ-JTE and SM-JTE is the best efficiency JTE techniques than MFZ-JTE which needs large doping concentration in short JTE width.

Proper Installation Distance for Heating Effect of Nano-Carbon Fiber Infrared Heating Lamp for Stable Production of Watermelon Grafted Seedlings in Winter Season (동절기 수박 접목묘의 안정적 생산을 위한 나노탄소섬유적외선 램프의 난방효과에 대한 적정 설치간격)

  • Kim, Hye Min;Jeong, Hyeon Woo;Hwang, Hee Sung;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This study was carried out to investigate the proper wattage and installation distance for the efficient use of nano-carbon fiber infrared heating lamp (NCFIHL), a heating device advantageous for heating energy saving, when the production of watermelon plug seedlings in the plug seedling nursery in winter season. Six small beds were divided into plastic film, and 700 W and 900 W nano-carbon fiber infrared heating lamps were installed at 100 cm above the bed. 1 lamp at central (control), 60 cm interval (2 lamps), and 40 cm interval (3 lamps) heating lamps were installed in each bed inside the greenhouse. All treatments, except the control, were set to keep the night air temperature at 20℃ after lighting the NCFIHL. The leaf temperature showed a tendency to increase fast as the install distance was narrow. The leaf length and leaf width tended to increase as the installation distance of the 700 W heating lamp was narrow. The compactness was high in 700 W heating lamp with 40 cm of installation distance. Therefore, in consideration of maintaining the set temperature at night, installing 700 W electric lamps at 40 cm was an efficient power and installation distance for watermelon grafted seedlings considering economic feasibility.

A Study on the Standards of South Korea Type Manual Wheelchair in Accordance with the Human Body Size of Adult (성인인체치수에 따른 한국형수동휠체어 표준규격에 관한 고찰)

  • Kim, S.E.;Song, B.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Manual wheelchair is one of the most used assistant device in Korea and the size of the wheelchair is defined as KS P ISO 7176-5 which follows the ISO 7176-5 standard size. But the standard often doesn't fit to Korean people because the ISO was enacted by foreigners' body sizes. Actually the result of survey from the Korean Agency for Technology and Standards showd that the designated sizes of height, width, deep of seat except armrest and the height of backrest of a chair in the present KS P ISO 7176-5 are much bigger and the height of armrest is smaller than the sizes investigated by the survey. In case the disabled person has a long wheelchair use time everyday, the posture of user should be uncomfortable because the mismatched size should cause user's pelvis rotations, slouching pose and low stability. Also, inside of knee may touch the wheelchair seat and user can't keep a correct posture. In this paper, the body sizes of Korean disabled person were investigated and the correct wheelchair sizes for Korean people are provided.

  • PDF

Studies on the Fabrication of 0.2 ${\mu}m$Wide-Head T-Gate PHEMT′s (0.2 ${\mu}m$ Wide-Head T-Gate PHEMT 제작에 관한 연구)

  • Jeon, Byeong-Cheol;Yun, Yong-Sun;Park, Hyeon-Chang;Park, Hyeong-Mu;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2002
  • n this paper, we have fabricated pseudomorphic high electron mobility transistors (PHEMT) with a 0.2 ${\mu}{\textrm}{m}$ wide-head T-shaped gate using electron beam lithography by a dose split method. To make the T-shape gate with gate length of 0.2 ${\mu}{\textrm}{m}$ and gate head size of 1.3 ${\mu}{\textrm}{m}$ we have used triple layer resist structure of PMMA/P(MMA-MAA)/PMMA. The DC characteristics of PHEMT, which has 0.2 ${\mu}{\textrm}{m}$ of gate length, 80 ${\mu}{\textrm}{m}$ of unit gate width and 4 gate fingers, are drain current density of 323 ㎃/mm and maximum transconductance 232 mS/mm at $V_{gs}$ = -1.2V and $V_{ds}$ = 3V. The RF characteristics of the same device are 2.91㏈ of S21 gain and 11.42㏈ of MAG at 40GHz. The current gain cut-off frequency is 63GHz and maximum oscillation frequency is 150GHz, respectively.ively.

Design of Internal Coupling Structure for Touch Panel Devices Using Optical Coupling of a Pen-Shaped Light Source with Optical Waveguides (광원을 내장한 펜의 출력광과 광 도파로의 광 결합을 이용하는 터치 패널 장치의 내부 광 결합 구조 설계)

  • Park, Dae-Seo;Kim, Dae-Jong;O, Beom-Hoan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.128-133
    • /
    • 2009
  • In this paper, an optical touch panel device is newly proposed, with operating principle based on the optical coupling between a pointing pen having a built-in light source and perpendicularly crossed optical waveguide arrays. In order to enable an external light to couple into a waveguide core, the auxiliary pyramidal structures are introduced into all intersecting points located periodically along optical waveguides. The shape is optimized for minimizing the unwanted propagation loss due to the same structure by a ray tracing method. For the optical waveguide with the size of $50{\times}50{\mu}m^2$, the bottom width, height, and slope angle of the optimized pyramidal structure are $50{\mu}m$, $22.5{\mu}m$, and $42^{\circ}$, respectively. The optical coupling efficiency of about 97.8% and the average propagation loss of 0.3 dB/mm were achieved for the optimized touch panel. Finally, it is found from the tolerance analysis that tilting of the pen up to ${\pm}12^{\circ}$ can be allowed.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.

LMU Design Optimization for the Float-Over Installation of Floating Offshore Platforms (부유식 해양구조물의 플로트오버 설치용 LMU 최적설계)

  • Kim, Hyun-Seok;Park, Byoungjae;Sung, Hong Gun;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A Leg Mating Unit (LMU) is a device utilized during the float-over installation of offshore structures that include hyperelastic pads and mating part. The hyperelastic pads absorb the loads, whereas the mating part works as guidance between topside and supporting structures during the mating sequence of float-over installation. In this study, the design optimization of an LMU for the float-over installation of floating-type offshore structures is conducted to enhance the performance and to satisfy the requirements defined by classification society regulations. The initial dimensions of the LMU are referred to the dimensions of those used in fixed-type float-over installation because only the location and the number of LMUs are known. The two-parameter Mooney-Rivlin model is adopted to describe the hyperelastic pads under given material parameters. Geometric variables, such as the thickness, height, and width of members, as well as configuration variables, such as the angle and number of members, are defined as design variables and are parameterized. A sampling-based design sensitivity analysis based on latin hypercube sampling method is performed to filter the important design variables. The design optimization problem is formulated to minimize the total mass of the LMU under maximum von Mises stress and reaction force constraints.

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.