• Title/Summary/Keyword: width control

Search Result 2,405, Processing Time 0.028 seconds

Research on Carried-Based PWM with Zero-Sequence Component Injection for Vienna Type Rectifiers

  • Ma, Hui;Feng, Mao;Tian, Yu;Chen, Xi
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.560-568
    • /
    • 2019
  • This paper studies the inherent relationship between currents and zero-sequence components. Then a precise algorithm is proposed to calculate the injected zero-sequence component to control the DC-Link neutral-point voltage balance, which can result in a more efficient and flexible neutral point voltage balance with a desirable performance. In addition, it is shown that carried-based PWM with the calculated zero-sequence component scheme can be equivalent to space-vector pulse-width modulation (SVPWM). Based on the proposed method, the optimal zero-sequence component of the feasible modulation indices is analyzed. In addition, the unbalanced load limitation of the DC-Link neutral-point voltage balance control is also revealed. Simulation and experimental results are shown to verify the validity and practicality of the proposed algorithm.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

Automatic Left/Right Boom Angles Control System for Upland Field (전자용 붐방제기의 붐의 좌우 경사각 자동제어)

  • 이중용;김영주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.457-462
    • /
    • 2000
  • Boom sprayers have been known by their excellency in field efficiency worker’s safety and pest control efficacy. The boom sprayer in Korea that was developed for paddy field is not suitable for upland field of which shape is irregular and inclination is steep, due to heavy chemical tank long boom width and manual on-off control of spraying. The goal of the study was to develope a boom control system that could control boom angles of left and right boom automatically and independently corresponding to local field slope. The prime mover was selected as a cultivating tractor. Main results of this study were as follows. 1. Ultrasonic sensor whose response time was 0.1s and response angle was within $\pm$20$^{\circ}$was selected to measure distance. Voltage output of the sensor(X, Volt) had a highly significant linear relationship with the vertical distance between the sensor and ground surface(Y, mm) as follows; Y=0.0036X-0.437 2. Left and right section of the boom could be folded up by a position control device(on-off control) which could control the left and right boom independently corresponding to local slope by equalizing distances between the sensor and boom at the center and left/right boom. Most reliable DB(dead band) was experimentally selected to be 75$\Omega$(6cm). 3. At traveling velocity of 0.3~0.5m/s RMS of error between desired and achieved height was less than 4.5cm The developed boom angle controller and boom linkage system were evaluated to be successful in achieving the height control accuracy target of $\pm$10cm.

  • PDF

Study on the Physical Property of Soft Film for Greenhouse (시설하우스용 연질필름의 물리적 특성에 관한 연구)

  • 장유섭;한길수;김승희;정두호;김기철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1996
  • This study was performed to induce a quality improvement and standardization of materials used for greenhouse. For this purpose, physical and mechanical properties of agricultural films for greenhouse were measured by kinds and thickness of the films. The properties are composed of impact, tensile, tear propagation strength and light transmittance. The results were summarized as follows. 1. At the impact test result of the falling dart, the thicker the film, the greater the impact strength of soft film. The impact weight at 50 percents is from 158g to 213g and the strength of low density polyethylene(LDPE) film is higher than the rest of any other films. 2. Seeing the leveling of the impact rupture, maximum impact weight which was ruptured very little ranges from 62g to 192g. The impact strength of 0.1mm films was higher than that of 0.05mm as from 1.8 to 3.2 times. 3. Tensile weight covers from 0.95kg to 2.22kg in the test materials, and the weight of lengthwise film is larger than that of width. LDPE film has high value of tensile weight. Elongation range is from 345 to 102 percent and lengthwise elongation is greater than width as much as from 1.4 to 2.7 times. 4. Tea. propagation strength ranges from 80.5kg/cm to 121.7kg/cm, and unlike which of LDPE film has high value, EVA film has low value in the films tested. The width strength is higher than the lengthwise. 5. The light transmittance of the soft film is about 78-92 percent in the range of ultraviolet ray, but has high value in the visible ray range.

  • PDF

The Effect of Staggered Pedestrian Crossings at Wide Width Intersections (광폭교차로에서 2단 횡단보도 설치 효과분석)

  • Kim, Dong-Nyong;Hong, Yoo-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.23-35
    • /
    • 2011
  • The pedestrian green time is usually long at wide width intersections. This sometimes causes the increase of delay on the whole intersection because of long cycle length and thus small g/C ratio on some direction. In this paper, to improve these problems, staggered pedestrian crossing was evaluated on the vehicular and pedestrian aspects. The results were gained by using both TRANSYT-7F and VISSIM model. The vehicle control delay of the staggered pedestrian crossing was estimated to be decreasing than that of the general pedestrian crossing by 14.9% to 85.6%. The pedestrian average delay of two pedestrian crossing systems was examined by analytical method and VISSIM. According to the analytical method there was no significant difference between each pedestrian crossing system. The pedestrian delay of staggered pedestrian crossing was from 13.4% to 22.3% than the general pedestrian crossing by VISSIM. In conclusion, the staggered pedestrian crossing was more effective than general pedestrian crossing for both the vehicle and the pedestrian. However this conclusion was resulted from micro simulation where traffic volume condition, v/c, was from 0.8 to 1.1.

Estimation of Leaf Area, Leaf Fresh Weight, and Leaf Dry Weight of Irwin Mango Grown in Greenhouse using Leaf Length, Leaf Width, Petiole Length, and SPAD Value (엽장, 엽폭, 엽병장 및 SPAD 값을 이용한 온실 재배 어윈 망고의 엽면적, 엽생체중과 엽건물중 추정)

  • Jung, Dae Ho;Cho, Young Yeol;Lee, Jun Gu;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.146-152
    • /
    • 2016
  • Due to complicate canopy structures of Irwin mangoes grown in greenhouses, it is difficult to determine their growth parameters accurately. Leaf area, leaf fresh weight, and leaf dry weight are widely used as indicators to diagnose the tree growth. Therefore, it is necessary to establish models that can non-destructively estimate these growth indicators. The objective of this study was to establish regression models to estimate leaf area, leaf fresh weight, and leaf dry weight of Irwin mangoes (Mangifera indica L. cv. Irwin) by using leaf length, leaf width, petiole length, and SPAD value. The input values of leaf length, leaf width, petiole length, and SPAD value of 6-year old Irwin mangoes were measured, and the corresponding output values of leaf area, leaf fresh weight, and leaf dry weight were also measured. After 14 models were selected among the existing models, coefficients of the models were estimated by regression analysis. Three models with higher $R^2$ and lower RMSE values selected. In validation the $R^2$ values for the selected models were 0.967, 0.743, and 0.567 in the leaf area, leaf fresh weight, and leaf dry weight models, respectively. It is concluded that this models will be helpful to conveniently diagnose the growth of the Irwin mango.

Development of Structural Model and Analysis of Design Factors for Small Greenhouse of Urban Agriculture (도시농업을 위한 소형온실 설계요인 분석 및 구조모델 개발)

  • Kim, Hyung-Kweon;Ryou, Young-Sun;Kim, Young-Hwa;Lee, Tae-Seok;Oh, Sung-Sik;Lee, Won-Suk;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.388-395
    • /
    • 2019
  • The purpose of this study is to suggest structural model and analyze design factors for the development of small greenhouse standardization model. The average dimensions of small greenhouse desired by urban farmers were 3.3m in width, 1.9m in eaves height, 2.7m in ridge height, 5.7m in length. The cladding materials for small greenhouse were preferred to glass, PC board and plastic film, framework to aluminum alloy and steel, and heating method in electrical energy. In addition, it was analyzed that small greenhouses need to develop structural model by dividing them into entry-level type and high-level type. The roof type that was used for entry-level type was arch shape, framework was steel pipe, cladding material was plastic film. On the other hand, high-level type was used in even span or dutch light type, framework with square hollow steel, cladding materials with glass or PC board. In consideration of these findings and practicality, this study developed four types of small greenhouses. The width, eaves height, ridges height, and length of the small greenhouses of even span type, which were covered with 5mm thick glass and 6mm thick PC board were 3m, 2.2m, 2.9m, and 6m, respectively. The small greenhouse of dutch light type covered with 5mm thick glass was designed with 3.8m in with, 2.2m in eaves height, 2.9m in ridges height, and 6m in length. The width, eaves height, ridges height, and length of the arch shape small greenhouse covered with a 0.15mm PO film were 3m, 1.5m, 2.8m, and 6m, respectively.

Development of a Model for Estimating Leaf Area and the Number of Flower Using Leaf Length and Width of Farfugium japonicum Kitam. (털머위(Farfugium japonicum Kitam.)의 엽장과 엽폭을 이용한 엽면적 및 개화 수 추정 모델 개발)

  • Dae Ho Jung;Yong Suk Chung;Hyunseung Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2023
  • The leopard plant has the characteristic of being used for ornamental purposes when there are yellow spots on the leaves, and is widely used as a bed plant for viewing flowers. To set several indicators to predict the growth of crops with ornamental value, and to quantitatively express the relationship between the indicators are necessary. In this study, we determine a model that estimates the leaf area and the number of flower of Farfugium japonicum Kitam. using leaf length and width, and conducting a regression analysis on some regression models. As an indicator for estimating the leaf area and the number of flower, the leaf length and width of F. japonicum were measured and applied to 8 regression models. As a result of regression analysis of 8 models that estimated leaf area and the number of flower, R2 values of the linear models were all higher than 0.84 and 0.80. As a result of validation, using the most reliable model among the models for estimating the leaf area and the number of flowering, R2 was 0.90 and 0.82, respectively. Using a model that estimates various indicators that can be used for quality evaluation from easy-to-measure morphological factors, the evaluation of ornamental plants will be facilitated.

A Study on the Power Converter Control of Utility Interactive Photovoltaic Generation System (계통 연계형 태양광 발전시스템의 전력변환기 제어에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2009
  • In this paper, a photovoltaic system is designed with a step up chopper and single phase PWM(Pulse Width Modulation) voltage source inverter. Where proposed Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature because solar cell has typical voltage and current dropping character. The single phase PWM voltage source the inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power. from 10 to 20[%]. The single phase PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In order to enhance the efficiency of photovoltaic cells, photovoltaic positioning system using sensor and microprocessor was design so that the fixed type of photovoltaic cells and photovoltaic positioning system were compared. In result, photovoltaic positioning system can improved 5% than fixed type of photovoltaic cells. In addition, I connected extra power to the system through operating the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and the phase of single-phase inverter of PWM voltage type can be synchronized. And, It controlled in order to provide stable pier to the load and the system through maintaining high lurer factor and low output power of harmonics.

The Development of Wide-span Plastic Film Greenhouse for Strawberry Seedling Cultivation (딸기 육묘용 광폭 플라스틱 필름 온실 개발)

  • Man Kwon Choi;Myeong Whan Cho;Hyun Ho Shin;Ki Bum Kweon
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2023
  • This study aimed to develop an optimal greenhouse model for strawberry seedling during the summer high-temperature period based on the results of field surveys. We conducted a survey on the structure types of 46 strawberry seedling farms nationwide, including width, ridge height, eaves height, ventilation method, seedling bed width, and spacing. Based on the survey results, we derived the optimal greenhouse model by considering various factors. The greenhouse width was set at 14 meters to maximize the efficiency of seedling beds and overall space. The height was determined at 2 meters, taking into account ventilation during the summer season. To reduce stress on the supporting structure due to snow loads, we established a reinforcement installation angle of 50 degrees. We analyzed two different models that use support beams with dimensions of φ48.1×2.1t and φ59.9×3.2t, respectively, to ensure structural safety against meteorological disasters, considering regional design wind speeds and snow accumulation. We utilized these developed greenhouse model to conduct strawberry seedling experiments, resulting in a high survival rate of average 93.2%. These findings confirm the usefulness of the strawberry seedling greenhouse in improving the seedling environment and enhancing overall efficiency.