• Title/Summary/Keyword: width control

Search Result 2,405, Processing Time 0.031 seconds

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks' VIV stability

  • Li, Ke;Qian, Guowei;Ge, Yaojun;Zhao, Lin;Di, Jin
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • Vortex-Induced-Vibration (VIV) is one kind of the wind-induced vibrations, which may occur in the construction and operation period of bridges. This phenomenon can bring negative effects to the traffic safety or can cause bridge fatigue damage and should be eliminated or controlled within safe amplitudes.In the current VIV studies, one available mitigation countermeasure, the horizontal flow-isolating plate, shows satisfactory performance particularly in PI shaped bridge deck type. Details of the wind tunnel test are firstly presented to give an overall description of this appendage and its control effect. Then, the computational-fluid-dynamics(CFD) method is introduced to investigate the control mechanism, using two-dimensional Large-Eddy-Simulation to reproduce the VIV process. The Reynolds number of the cases involved in this paper ranges from $1{\times}10^5$ to $3{\times}10^5$, using the width of bridge deck as reference length. A field-filter technique and detailed analysis on wall pressure are used to give an intuitive demonstration of the changes brought by the horizontal flow-isolating plate. Results show that this aerodynamic appendage is equally effective in suppressing vertical and torsional VIV, indicating inspiring application prospect in similar PI shaped bridge decks.

Effect of the Fall Prevention Program(EPP) on gait, balance and muscle strength in elderly women at a nursing home (낙상예방 프로그램이 양로원 여성노인의 보행, 균형 및 근력에 미치는 영향)

  • Jeon, Mi-Yang;Choe, Myoung-Ae
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.1
    • /
    • pp.5-23
    • /
    • 2002
  • Purpose: To determine the effect of the Fall Prevention Program(EPP) on gait, balance and muscle strength in elderly women at a nursing home. Method: The subjects of this consisted of 38 elderly women between the ages of 70 to 89 years living at a nursing home located in Seoul. Each of the experimental group and control group was composed of 19 subjects. The subjects in experimental group have participated in FPP for the 8 weeks which consisted of exercise, education and foot care. They started to exercise for 40 minutes per session, 3 sessions a week during the 1st week at 40% of age adjusted maximum heart rate. From the 2nd week to the 4th week, they increased the duration of exercise to 50 minutes per session and the intensity to 60% of age-adjusted maximum heart rate. They participated in 50 minutes at 60% of age-adjusted maximum heart rate from the 5th week to the 8th week. Each exercise session consisted of 10 minutes of warming-up exercise, 30 minutes of conditioning exercise and 10 minutes of cooling-down exercise. They participated in education for 20 minutes per week from the 1st week to the 4th week. Then they participated in a 30-minute foot care program per week from the 5th week to the 8th week. Gait, balance and muscle strength for each subject were measured before and after FPP. Gait was evaluated by step length, step width, gait speed and walking distance. Balance was measured by the duration of standing on one leg with their eyes closed and open each, and a get-up and go test. Grip strength was measured by hand dynamometer. Hip extensor and flexor strength, knee extensor and flexor strength and ankle plantarflexor and dorsiflexor strength were measured by manual muscle tester. Data was analyzed using SPSS form Windows. t-test and Chi square test were utilized as a homogeneity test. Repeated measure ANOVA was used to test the effect of FPP. Result: 1) Step width significantly decreased, and step length, gait speed and walking distance significantly increased in the experimental group compared with the control group after FPP(p<0.005). 2) There was no significant change in standing time on one leg with their eyes closed after FPP. The standing time on leg with their eyes open and the time of "get-up and go" significantly decreased in the experimental group compared with the control group after FPP(p<0.005). 3) Muscle strength-grip strength, hip extensor and flexor strength-significantly increased in the experimental group compared with the control group after FPP(p<0.005). 4) There was no significant difference of frequency of fall between the experimental group and control group during the period of FPP. Conclusion: These results suggest that FPP can increase gait, balance and muscle strength of elderly women at a nursing home.

  • PDF

Turf(Zoysia japonica L.) Quality Enhancement with By-product Gypsum (부산물 석고를 이용한 잔디 품질 개선)

  • Kim, Kye-Hoon;Hong, Sook-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.56-63
    • /
    • 2004
  • This study was carried out to find out the effect of by-product gypsum(phosphogypsum, PG) application on enhancement of turf quality. For the first experiment, 10 ton $ha^{-1}$ PG was applied to 1m${\times}$10m (width${\times}$length) Plots with 4 replicates on a sloping area of fairway where turf(Zoysia japonica L.) was grown. Both top- and sub-soil samples were collected before and after treatment and were analyzed for pH, EC(e1ectrica1 conductivity), Ca and Mg contents. At the same time when soil samples were collected, specific color difference sensor value(SCDSV) that represented chlorophyll contents, fresh and dry weight of the turf were determined to find out the effect of PG treatment on turf growth. SCDSV of turf from PG treated plots measured at 98 and 147 days after treatment were significantly higher than those from control. Considering higher fresh and dry weight of leaf per unit area from PG treated plots than that from control, it was concluded that the elevated Ca and S level of the PG treated plots resulted in vigorous leaf growth of turf. For the second experiment 2, 5 and 10 ton $ha^{-1}$ PG were applied to 1m${\times}$10m(width${\times}$length) Plots with 3 replicates at a closer location as was used for the first experiment to find out the appropriate PG application rate. Before and after treatment soil and plant samples were collected and were analyzed by the same way as the first experiment. The pH of all the soil samples collected from PG treated plots at 38 days after treatment was lower than that from control. This trend changed as time passed. However, the pH of the soil from 10 ton $ha^{-1}$ PG treated plot was lower than that from control during the whole period of the second experiment. SCDSV, fresh and dry weight of leaf from PG treated plots at all 3 rates were higher than those from control for the second experiment. PG application to turf will be beneficial for both mass consumption of by-product gypsum and enhancement of turf quality.

Identification of Motor Parameters and Improvement of Voltage Error for Improvement of Back-emf Estimation in Sensorless Control of Low Speed Operation (저속 센서리스 제어의 역기전력 추정 성능 향상을 위한 모터 파라미터 추정과 전압 오차의 개선)

  • Kim, Kyung-Hoon;Yun, Chul;Cho, Nae-Soo;Jang, Min-Ho;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.635-643
    • /
    • 2018
  • This paper propose a method to identify the motor parameters and improve input voltage error which affect the low speed position error of the back-emf(back electromotive force) based sensorless algorithm and to secure the operation reliability and stability even in the case where the load fluctuation is severe and the start and low speed operation frequently occurs. In the model-based observer used in this paper, stator resistance, inductance, and input voltage are particularly influential factors on low speed performance. Stator resistance can cause resistance value fluctuation which may occur in mass production process, and fluctuation of resistance value due to heat generated during operation. The inductance is influenced by the fluctuation due to the manufacturing dispersion and at a low speed where the change of the current is severe. In order to find stator resistance and inductance which have different initial values and fluctuate during operation and have a large influence on sensorless performance at low speed, they are commonly measured through 2-point calculation method by 2-step align current injection. The effect of voltage error is minimized by offsetting the voltage error. In addition, when the command voltage is used, it is difficult to estimate the back-emf due to the relatively large distortion voltage due to the dead time and the voltage drop of the power device. In this paper, we propose a simple circuit and method to detect the voltage by measuring the PWM(Pulse Width Modulation) pulse width and compensate the voltage drop of the power device with the table, thereby minimizing the position error due to the exact estimation of the back-emf at low speed. The suitability of the proposed algorithm is verified through experiment.

Photosynthetic activity and photoinhibition in seedlings of red pepper (Capsicum annuum L.) grown from low dose $\gamma$-irradiated seeds

  • Kim, Jae-Sung;Lee, Young-Keun;Lee, Hae-Youn;Baek, Myung-Hwa;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.397-399
    • /
    • 2002
  • The seedling height, leaf width and leaf length of pepper increased in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than the control. Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. Fv/Fm was decreased with increasing illumination time by 50% after 4 hours, while Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the low dose $\gamma$ radiation increased resistance of plants to photoinhibition.

  • PDF

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

A Study on the Cuf-off Speed of Small-scale Wind Power System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 한계 풍속에 관한 연구)

  • Ku, Hyun-Keun;Lee, Hyung-Uk;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.484-489
    • /
    • 2014
  • Three phase PWM(Pulse Width Modulation) converter of the small-scale wind power system is able to charge battery under the rated wind speed regions. However, it is impossible to control output power of converter at the over win speed region because back-EMF(Electro Motive Force) of PMSG(Permanent Magnet Synchronous Generator) is higher than the battery terminal voltage of PMSG is reduced. However, the cut-off wind speed exists although battery charging algorithm is implemented by flux weakening control method. Therefore, this paper performs analysis of other factors which affects limitation wind speed. The validity of the analysis are verified through simulation.

Optimal Design and Simulation of SCARA Robot Arm (스카라 로봇 암의 최적화 설계 및 시뮬레이션)

  • Lee, Jong-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.612-618
    • /
    • 2009
  • This study is concerned about the optimal design of the arm 1 and arm 2 in the SCARA robot. The mass and inertia moment of the arm I and arm 2 in a SCARA robot is greatly affected on the performance such as a cycle time, and torques loaded on $1^{st}$ axis and $2^{nd}$ axis. To reduce the mass and inertia moment, this study carried out optimal design by FEM analysis using parametric variables, which is a width, a height of the rib and a thickness of arm in the arm. The rib is adapted instead of reducing the thickness in the arm. And the simulation by computer was conducted on two given paths in X direction and Y direction. After optimal design, the result showed that maximum torque of $1^{st}$ axis and $2^{nd}$ axis reduced to maximum 9.5% on a given path.

A Switched VCO-based CMOS UWB Transmitter for 3-5 GHz Radar and Communication Systems

  • Choi, Woon-Sung;Park, Myung-Chul;Oh, Hyuk-Jun;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.326-332
    • /
    • 2017
  • A switched VCO-based UWB transmitter for 3-5 GHz is implemented using $0.18{\mu}m$ CMOS technology. Using RF switch and timing control of DPGs, the uniform RF power and low power consumption are possible regardless of carrier frequency. And gate control of RF switch enables the undesired side lobe rejection sufficiently. The measured pulse width is tunable from 0.5 to 2 ns. The measured energy efficiency per pulse is 4.08% and the power consumption is 0.6 mW at 10 Mbps without the buffer amplifier.