• Title/Summary/Keyword: width control

Search Result 2,405, Processing Time 0.029 seconds

Design and implementation of BLDC motor drive logic using SVPWM method with FPGA (FPGA를 활용한 SVPWM방식의 정현파 BLDC 모터 구동 로직 설계 및 구현)

  • Jeon, Byeong-chan;Park, Won-Ki;Lee, Sung-chul;Lee, Hyun-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.652-654
    • /
    • 2016
  • This paper shows the Design and implementation of sinusoidal BLDC motor drive logic using SVPWM method with FPGA. Sinusoidal BLDC motor driver logic consists of sine-wave PWM generator, dead-time and lead angle control logic. PWM generator logic is designed using SVPWM method for increase of 15.5% linear domain than general sine-wave PWM. This logic is verified and implemented using Spartan-6 FPGA Board. Test results show that THD(Total Harmonic Distortion) of motor-driving current is 19.2% and rotor position resolution is 1.6 degree.

  • PDF

An Experimental Study on Evaluation of Fatigue Safety and Serviceability for the Precast Half Deck Panel Joints (반단면 프리캐스트 판넬 이음부의 피로 안전성 및 사용성 평가를 위한 실험적 연구)

  • Park, Woo Jin;Hwang, Hoon Hee;Kwon, Nam Seung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.50-56
    • /
    • 2019
  • Precast members have relatively good quality because they are manufactured in an environment suitable for quality control. A typical precast method in which pre-fabricated segments are assembled in the field requires a joint. Although the joint is a small part of the member, it greatly affects the behavior and quality of the structural member. In the previous study of this paper, the flexural strength of a joint, which is generally applied to half-depth precast deck systems, was verified to have higher strength than the design requirement. In addition, the proposed joint has been verified to have higher strength by reinforcing the connecting rebar. However, even if the flexural strength of the joints is sufficient, excessive deflection or lack of fatigue performance is likely to cause cracks in the half-depth precast deck system. In this study, the serviceability of the half-deck precast panel specimens with joints was evaluated and the experimental verification was conducted to evaluate the fatigue performance of the joint without connection rebar. As a result, the serviceability such as deflection and crack width was found to be higher than the design requirement in all the specimens. In the fatigue test, the fatigue effect was insignificant even in the absence of connection rebar.

Numerical Study to Evaluate Course-Keeping Ability in Regular Waves Using Weather Vaning Simulation

  • Kim, In-Tae;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2021
  • Since the introduction of the mandatory energy efficiency design index (EEDI), several studies have been conducted on the maneuverability of waves owing to the decrease in engine power. However, most studies have used the mean wave force during a single cycle to evaluate maneuverability and investigated the turning performance. In this study, we calculated the external force in accordance with the angle of incidence of the wave width and wavelengths encountered by KVLCC2 (KRISO very large crude-oil carrier) operating at low speeds in regular waves using computational fluid dynamics (CFD). We compare the model test results with those published in other papers. Based on the external force calculated using CFD, an external force that varies according to the phase of the wave that meets the hull was derived, and based on the derived external force and MMG control simulation, a maneuvering simulation model was constructed. Using this method, a weather vaning simulation was performed in regular waves to evaluate the course-keeping ability of KVLCC2 in waves. The results confirmed that there was a difference in the operating trajectory according to the wavelength and phase of the waves encountered.

Characteristics of Fine Particles during Cold Front Passage in Busan, on March 19, 2020 (부산지역 2020년 3월 19일 한랭전선 통과 시 미세먼지 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.475-485
    • /
    • 2021
  • This research investigated the characteristics of fine particles during cold front passage in Busan, on March 19, 2020. The cold front speed was 17.4 m/s (about 63k km/hr), moving from the northwest to the southeast, and with a width of about 64 km. The backward trajectory analysis showed that a southern sea air parcel flowed into Busan before the cold front passage, carrying continental materials from China transported into Busan after cold front passage. The PM10 concentration in Busan showed a rapid increase after passing through the cold front, with PM2.5 showing a high concentration during cold front passage. The PM2.5/PM10 ratio was 0.10 - 0.30. When the cold front passed, SO42-, NO3-, Ca2+, NH4+, Na+, and K+ in PM2.5 showed a rapid increase, with SO42- showing the most significant increase. These results indicated that understanding the characteristics of fine particles during cold front passage in Busan could provide insight into establishing a strategy to control urban air quality.

Spectral-shape-controllable Chirped Fiber Bragg Grating with a Photomechanical Microactuator: Simulation and Experiment

  • Moon, Jong-Ju;Ko, Youngmin;Park, Su-Jeong;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.477-482
    • /
    • 2020
  • Recently, one of the authors has been reported an optically tunable fiber Bragg grating (FBG) with a photomechanical polymer. It was based on a typical FBG with a downsized diameter of 60 ㎛, coated with azobenzene-containing polymer material. Azobenzene is a well-known reversibly photomechanical stretchable material under ultraviolet (UV) light. The small part of the functional-coating region on the FBG absorbed UV light, which pulled the UV-exposed part of the grating. It was selectable as tunable FBG or tunable chirped FBG, by adjusting the position of UV exposure on the grating. As proof of concept for the tunable FBG device, the characteristics just including UV-induced center-wavelength shift and spectral-width changes of the device were reported. In this paper, we report for the first time that the microactuator makes it possible to control the spectral shape of the FBG reflection, according to the specifications (shape and intensity) of the UV beam that reaches the FBG coated with the azobenzene polymer. In addition, we provide the group-delay profiles for the chirped FBG, so that the sign of its dispersion (normal or anomalous) can be tailored by simply selecting the moving direction of the UV light's displacement in the experiment.

Cascaded Volume Bragg Grating for Narrow Spectral Linewidth in High-power Laser Diodes

  • Lee, Dong-Jin;Shim, Gyu-Beom;Jeong, Ji-Hun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.282-287
    • /
    • 2022
  • Narrowing the spectral linewidth and improving the wavelength stability of high-power laser diodes (HPLDs) are both in high demand for rapidly maturing industrial laser applications. In this study, we investigate the spectral behavior of a commercial HPLD bar module composed of 19 laser diodes (LDs) in a single-layered bar with a built-in volume Bragg grating (VBG) and an additional cascaded VBG. Optical loss due to the extra cascaded VBG is kept below 5% when the optical output is 5 W or more. The full width at half maximum of the Fabry-Perot peak from the cascaded VBG is reduced to about 12.4% and 29.1% at the edge (1st LD) and center (10th LD) of the HPLD bar module respectively, compared to using only a built-in VBG at an optical power of 10 W or more. In addition, fine wavelength tuning is achieved by temperature control of the extra VBG, and the obtained wavelength-tuning range amounts to about 10.6 pm/K.

Experimental evaluation of fuel rod pattern analysis in fuel assembly using Yonsei single-photon emission computed tomography (YSECT)

  • Choi, Hyung-joo;Cheon, Bo-Wi;Baek, Min Kyu;Chung, Heejun;Chung, Yong Hyun;You, Sei Hwan;Min, Chul Hee;Choi, Hyun Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1982-1990
    • /
    • 2022
  • The purpose of this study was to verify the possibility of fuel rod pattern analysis in a fresh fuel assembly using the Yonsei single-photon emission computed tomography (YSECT) system. The YSECT system consisted of three main parts: four trapezoidal-shaped bismuth germanate scintillator-based 64-channel detectors, a semiconductor-based multi-channel data acquisition system, and a rotary stage. In order to assess the performance of the prototype YSECT, tomographic images were obtained for three representative fuel rod patterns in the 6 × 6 array using two representative image-reconstruction algorithms. The fuel-rod patterns were then assessed using an in-house fuel rod pattern analysis algorithm. In the experimental results, the single-directional projection images for those three fuel-rod patterns well discriminated each fuel-rod location, showing a Gaussian-peak-shaped projection for a single 10 mm-diameter fuel rod with 12.1 mm full-width at half maximum. Finally, we successfully verified the possibility of the fuel rod pattern analysis for all three patterns of fresh fuel rods with the tomographic images obtained by the rotational YSECT system.

Designing a Magnetically Controlled Soft Gripper with Versatile Grasping Based on Magneto-Active Elastomer

  • Li, Rui;Li, Xinyan;Wang, Hao;Tang, Xianlun;Li, Penghua;Shou, Mengjie
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.688-700
    • /
    • 2022
  • A composite bionic soft gripper integrated with electromagnets and magneto-active elastomers is designed by combining the structure of the human hand and the snake's behavior of enhancing friction by actively adjusting the scales. A silicon-based polymer containing magnetized hard magnetic particles is proposed as a soft finger, and it can be reversibly bent by adjusting the magnetic field. Experiments show that the length, width, and height of rectangular soft fingers and the volume ratio of neodymium-iron-boron have different effects on bending angle. The flexible fingers with 20 vol% are the most efficient, which can bend to 90° when the magnetic field is 22 mT. The flexible gripper with four fingers can pick up 10.51 g of objects at the magnetic field of 105 mT. In addition, this composite bionic soft gripper has excellent magnetron performance, and it can change surface like snakes and operate like human hands. This research may help develop soft devices for magnetic field control and try to provide new solutions for soft grasping.

A nondestructive method for controlling wind loads and wind-induced responses of wooden pagoda

  • LI, Yuhang;DENG, Yang;LI, Aiqun
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • High-rise wooden pagodas generate large displacement responses under wind action. It is necessary and wise to reduce the wind loads and wind-induced responses on the architectural heritage using artificial plants, which do not damage ancient architecture and increase greenery. This study calculates and analyzes the wind loads and wind-induced responses on the Yingxian Wooden Pagoda, in China, using artificial plants via the finite element analysis (FEA). A three-dimensional wind-loading field was simulated using a wind tunnel test. Wind loads and wind-induced responses, including the displacement and acceleration of the pagoda with and without artificial plants, were analyzed. In addition, three types of tree arrangements were discussed and analyzed using the score method. The results revealed that artificial plants can effectively control wind loads and wind-induced displacements, but the wind-induced accelerations are enlarged to some extent during the process. The height of the tree significantly affected the shelter effects of the structure. The distance of trees from the pagoda and arrangement width of the tree had less influence on shelter effects. This study extends the understanding of the nondestructive method based on artificial plants, for controlling the wind base loads and structural responses of wooden pagodas and preserving architectural heritage via FEA.

Design of Pixel Circuit of Micro LED Display with Double Gate Thin Film Transistors (더블 게이트 박막 트랜지스터를 활용한 Micro LED 디스플레이 화소 회로 설계)

  • Kim, Taesoo;Jeon, Jaehong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.50-55
    • /
    • 2022
  • Due to the wavelength shift problem of micro LED caused by the change of current density, the active matrix driving pixel circuit that is used in OLED cannot be applied to micro LED displays. Therefore, we need a gray scale method based on modulation of duration time of light emission. In this study, we propose the PWM-controlled micro LED pixel circuit based on CMOS thin film transistors (TFTs). By adopting CMOS inverter structure, we can reduce the number of storage capacitors from the circuit and make the operating speed of the circuit faster. Most of all, our circuit is designed to make operating speed of PWM circuit faster by adopting feedback effect through double gate TFT structure. As a result, it takes about 4.7ns to turn on the LED and about 5.6ns to turn it off. This operating time is short enough to avoid the color distortion and help the precise control of the gray scale.