• Title/Summary/Keyword: wide-view image

Search Result 161, Processing Time 0.031 seconds

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

  • KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

Off-axis Two-mirror System with Wide Field of View Based on Diffractive Mirror

  • Meng, Qingyu;Dong, Jihong;Wang, Dong;Liang, Wenjing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.604-613
    • /
    • 2015
  • An unobstructed off-axis two-mirror system is presented in this paper. First a suitable initial configuration is established based on third-order aberration theory. In order to achieve a wide field of view (FOV) with high image quality , the diffractive mirror is adopted in the two-mirror system to increase the optimization freedom and the aberration relationship between diffractive phase coefficients and Zernike coefficients is derived. Furthermore, a complete comparison design example with a focal length of 1200 mm, F-number of 12, and FOV of 40° × 2° is given to verify the aberration correction ability of the diffractive mirror. The system average wavefront error is 0.007 λ (λ=0.6328 μm) developed from 0.061 λ when the system didn’t adopt the diffractive mirror. In this system the phase modulation function of the diffractive mirror is established as an even function of x, so we could obtain a symmetrical imaging quality about the tangential plane, and the symmetric aberration performance also brings considerable convenience to alignment and testing for the system.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

Design and Implementation of Automatic Detection Method of Corners of Grid Pattern from Distortion Corrected Image (왜곡보정 영상에서의 그리드 패턴 코너의 자동 검출 방법의 설계 및 구현)

  • Cheon, Sweung-Hwan;Jang, Jong-Wook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2645-2652
    • /
    • 2013
  • For a variety of vision systems such as car omni-directional surveillance systems and robot vision systems, many cameras have been equipped and used. In order to detect corners of grid pattern in AVM(Around View Monitoring) systems, after the non-linear radial distortion image obtained from wide-angle camera is corrected, corners of grids of the distortion corrected image must be detected. Though there are transformations such as Sub-Pixel and Hough transformation as corner detection methods for AVM systems, it is difficult to achieve automatic detection by Sub-Pixel and accuracy by Hough transformation. Therefore, we showed that the automatic detection proposed in this paper, which detects corners accurately from the distortion corrected image could be applied for AVM systems, by designing and implementing it, and evaluating its performance.

Correction of Fisheye Distortion and Perspective Distortion (어안렌즈왜곡 및 원근왜곡의 보정)

  • Song, Gwang-Yul;Yoon, Pal-Joo;Lee, Joon-Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.22-29
    • /
    • 2006
  • This paper considers the lens distortions such as a fisheye distortion and a perspective distortion. While a fisheye lens has a wide field-of-view, it causes a large distortion to the images. Regardless of a fisheye lens or a rectilinear lens, a lens generates perspective distortion in a vertical direction when the lens views in an upward direction or downward direction. These distortions deform images differently from human visual functions. Therefore, this paper presents a method to correct the distortions, and whereby, the research in this paper enlarges choices of images to image processing algorithm that may select the distorted images and the corrected images depending on applications. An infinite polynomial model is employed in the fisheye radial distortion correction, and the vertical perspective distortion correction is done by using a vanishing point. The methods introduced in this paper are implemented on the images captured by a rear-view camera installed on a vehicle and showed their robustness of the correction.

Optical Performance Measurement of the MATS Satellite

  • Park, Woojin;Hammar, Arvid;Lee, Sunwoo;Chang, Seunghyuk;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2018
  • The MATS (Mesosphere Airglow/Aerosol Tomography Spectroscopy) satellite is the next Swedish science microsatellite. We report optical performance test results of the limb telescope, which is the major payload. This telescope is designed with "linear astigmatism-free" (LAF) off-axis optical system in order to have high optical performance across the wide field of view. We measured Modulation Transfer Function (MTF) and Encircled Energy Diameter (EED) of the limb telescope. Full field imaging tests show expected results without linear astigmatism across the full field of view ($5.67^{\circ}{\times}0.91^{\circ}$). Since the amount of stray light is from the earth and the sun, we also simulated and measured the stray light in the field image.

  • PDF

FIR VIEW OF DISKS OF WEAK-LINE T TAURI STARS

  • Takita, Satoshi;Doi, Yasuo;Arimatsu, Ko;Ootsubo, Takafumi;AKARI Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.127-129
    • /
    • 2017
  • We have observed ~60 Weak-line T Tauri stars (WTTSs) toward the Chamaeleon star forming region using the AKARI Far-Infrared Surveyor (FIS) All-Sky maps. We could not detect any significant emission from each source even at the most sensitive WIDE-S band. Then, we have performed stacking analysis of these WTTSs using the WIDE-S band images to improve the sensitivity. However, we could not detect any significant emission in the resultant image with a noise level of $0.05MJy\;sr^{-1}$, or 3 mJy for a point source. The three-sigma upper limit of 9 mJy leads to the disk dust mass of $0.01M_{\oplus}$. This result suggests that the disks around Chamaeleon WTTSs are already evolved to debris disks.

CFHT: another opportunity for Korean Astronomy?

  • Veillet, Christian
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.125.1-125.1
    • /
    • 2011
  • After a short description of the observatory, this presentation will highlight some of the most recent scientific achievements based on CFHT observations and how they benefit from the current instrumentation and novel observing modes proposed to the CFHT users. We will then move to the mid-term future with the development of new spectroscopic capabilities (visible wide-field FTS or near-IR spectro-polarimetry) and the study of a novel wide-field imager in the visible using Ground-Layer AO to provide unprecedented image quality on a large field of view. As an option for the long-term future, the concept of a next generation 10-m class telescope to replace the current CFHT 3.6-m will be described. An emphasis will be given on how CFHT is slowly morphing into an Asia-Pacific Rim observatory and on the role the Korean community could play in such an endeavor, from immediate access to first-class astronomical data to partnering with other nations in exciting developments.

  • PDF

Wide-Field Imaging Telescope-0(WIT0): A New Wide-Field 0.25 m Telescope at McDonald Observatory

  • Lee, Sang-Yun;Im, Myungshin;Pak, Soojong;Ji, Tae-Geun;Lee, Hye-In;Hwang, Seong Yong;Marshall, Jennifer;Prochaska, Travis;Gibson, Coyne A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2017
  • A small wide-field imaging telescope is a powerful instrument to survey the Universe: wide-field image can monitor the variability of many sources at a time, e.g. young stellar objects and active galactic nuclei, and it can be an effective way to locate transient sources without precise positional information such as gravitational wave sources or some gamma-ray bursts. In February 2017, we installed a 0.25 m f/3.6 telescope on the McDonald 0.8 m telescope as a piggyback system. With a $4k{\times}4k$ CCD camera, the telescope has a $2.35{\times}2.35deg$ field-of-view. Currently, it is equipped with Johnson UBVRI filters and 3 narrow-band filters: $H{\alpha}$, OIII and SII. We will present the installation process, and the telescope performance such as detection limit and image quality based on the data from commissioning observations. We will also discuss possible scientific projects with this system.

  • PDF

Camera pose estimation framework for array-structured images

  • Shin, Min-Jung;Park, Woojune;Kim, Jung Hee;Kim, Joonsoo;Yun, Kuk-Jin;Kang, Suk-Ju
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.10-23
    • /
    • 2022
  • Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.