• 제목/요약/키워드: wide temperature range

검색결과 1,009건 처리시간 0.039초

다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서 (A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement)

  • 정완영;김태용;서용수
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

Bi-Stable and Wide Temperature-Range Electrowetting Displays

  • Blankenbach, K.;Schmoll, A.;Bitman, A.;Bartels, F.;Jerosch, D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1757-1760
    • /
    • 2007
  • Moving a droplet by electrowetting is the basis of our novel displays. This enables mechanical bistable and high reflective monochrome as well as color systems. Since no high temperature process is required, plastic substrates can be used. Our prototypes show promising performance in terms of a wide temperature range, contrast ratio and color.

  • PDF

부피법을 이용한 저온 등량 수소 흡착열 측정법 개선 (Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption)

  • 오현철
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Alpine Microorganisms: Useful Tools for Low-Temperature Bioremediation

  • Margesin, Rosa
    • Journal of Microbiology
    • /
    • 제45권4호
    • /
    • pp.281-285
    • /
    • 2007
  • Cold environments, including polar and alpine regions, are colonized by a wide diversity of micro-organisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms playa key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.

Research on Temperature Sensing Characteristics of Fiber Bragg Grating in Wide Temperature Range

  • Naikui Ren;Hongyang Li;Nan Huo;Shanlong Guo;Jinhong Li
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.162-169
    • /
    • 2024
  • This study investigates the temperature sensitivities of fiber Bragg grating (FBG) across a broad temperature spectrum ranging from -196 ℃ to 900 ℃. We developed the FBG temperature measurement system using a high-temperature tubular furnace and liquid nitrogen to supply consistent high and low temperatures, respectively. Our research showed that the FBG temperature sensitivity changed from 1.55 to 10.61 pm/℃ in the range from -196 ℃ to 25 ℃ when the FBG was packaged with a quartz capillary. In the 25-900 ℃ range, the sensitivity varied from 11.26 to 16.62 pm/℃. Contrary to traditional knowledge, the FBG temperature sensitivity was not constant. This inconsistency primarily stems from the nonlinear shifts in the thermo-optic coefficient and thermal expansion coefficient across this temperature spectrum. The theoretically predicted and experimentally determined temperature sensitivities of FBGs encased in quartz capillary were remarkably consistent. The greatest discrepancy, observed at 25 ℃, was approximately 1.3 pm/℃. Furthermore, it was observed that at 900 ℃, the FBG was rapidly thermally erased, exhibiting variable reflected intensity over time. This study focuses on the advancement of precise temperature measurement techniques in environments that experience wide temperature fluctuations, and has considerable potential application value.

Methane-based TRAPP method를 이용한 탄화수소 항공유의 전달 물성치 예측 연구 (A Study on the Prediction of Transport Properties of Hydrocarbon Aviation Fuels Using the Methane-based TRAPP Method)

  • 황성록;이형주
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.66-76
    • /
    • 2022
  • This study presents a prediction methodology of transport properties using the methane-based TRAPP (m-TRAPP) method in a wide range of temperature and pressure conditions including both subcritical and supercritical regions, in order to obtain thermo-physical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The viscosity and thermal conductivity are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid, gas, and the supercitical regions of representative hydrocarbon fuels. The predicted values are compared with those data obtained from the NIST database. It was demonstrated that the m-TRAPP method can give reasonable predictions of both viscosity and thermal conductivity in the wide range of temperature and pressure conditions studied in this paper. However, there still exists large discrepancy between the current data and established values by NIST, especially for the liquid phase. Compared to the thermal conductivity predictions, the calculated viscosities are in better agreement with the NIST database. In order to consider a wide range of conditions, it is suggested to select an appropriate method through further comparison with another improved prediction methodologies of transport properties.

게인 스케줄링을 이용한 광대역 온도제어기의 설계 (Design of Temperature based Gain Scheduled Controller for Wide Temperature Variation)

  • 정재현;김정한
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.831-838
    • /
    • 2013
  • This paper focused on the design of an efficient temperature controller for a plant with a wide range of operating temperatures. The greater the temperature difference a plant has, the larger the nonlinearity it is exposed to in terms of heat transfer. For this reason, we divided the temperature range into five sections, and each was modeled using ARMAX(auto regressive moving average exogenous). The movement of the dominant poles of the sliced system was analyzed and, based on the variation in the system parameters with temperature, optimal control parameters were obtained through simulation and experiments. From the configurations for each section of the temperature range, a temperature-based gain-scheduled controller (TBGSC) was designed for parameter variation of the plant. Experiments showed that the TBGSC resulted in improved performance compared with an existing proportional integral derivative (PID) controller.

Determination of temperature and flux variations during ultra-thin InGaN quantum well growth on a 2" wafer for GaN Green LED

  • 김효정;김민호;정훈영;이현휘
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.149-149
    • /
    • 2010
  • The origin of the inhomogeneous distribution of photoluminescence (PL) peak wavelength on a commercial 2" GaN wafer for green light emitting diode has been investigated by wide momentum transfer (Q) range x-ray diffraction (XRD) profile of InGaN/GaN multiple quantum wells. Near the GaN (0004) Bragg peak, wide-Q range XRD (${\Delta}Q$ > $1.4{\AA}-1$) was measured along the growth direction. Wide-Q XRD gives precise and direct information of ultra-thin InGaN quantum well structure. Based on the QW structural information, the variation of PL spectra can be explained by the combined effect of temperature gradient and slightly uneven flow of atomic sources during the QW growth. In narrow variations of indium composition and thickness of QW, an effective indium composition can be a good character to match structural data to PL spectra.

  • PDF

항공기 디스플레이용 LED Backlight의 광대역 Dimming Controller 구현 (Implementation of Wide-Range Dimming Controller of LED Backlight for Avionics Displays)

  • 임수현;임정규;신휘범;정세교;신민재;손승걸
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.53-55
    • /
    • 2007
  • This paper describes an implementation of a wide-range dimming controller of a LED backlight for Avionics applications such as the control data unit(CDU) and multi-function display(MFD). A feedback controller using a light sensor is proposed to control the brightness in the low dimming range. The proposed controller provides an improved control performance in the wide dimming range of 1:3000 even under the temperature variations. The experimental results are provided to show the effectiveness of the proposed control system.

  • PDF

동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구 (Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation)

  • 이진욱;안상민;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.