• 제목/요약/키워드: wide band-gap materials

검색결과 105건 처리시간 0.031초

(100) 및 (111) 배향을 갖는 CaF2 단결정 기판의 결함 분석 (Defect analysis of calcium fluoride single crystal substrates with (100) and (111) orientation)

  • 최예진;강민규;이기욱;박미선;정광희;정해균;김두근;이원재
    • 한국결정성장학회지
    • /
    • 제34권1호
    • /
    • pp.8-15
    • /
    • 2024
  • 다양한 광학 재료에 사용되는 CaF2 단결정은 밴드갭(12 eV)이 크고, 넓은 파장영역에서 투과율이 뛰어나며 낮은 굴절률과 분산을 가지는 특징이 있다. 이런 우수한 특성을 바탕으로 최근 리소그래피(Lithography) 공정에서 짧은 파장의 광원에서도 사용가능한 렌즈의 재료로 CaF2 단결정이 주목받고 있다. 다만 CaF2의 경우 157 nm에서 재료 고유의 복굴절이 존재하며, 이로 발생한 수차는 (100)면과 (111)면의 결합을 통해 보상할 수 있기 때문에 면 방향에 따른 특성을 조사하는 것이 필요하다. 이 연구에서는 초크랄스키(Czochralski) 방법으로 성장하여 상용화 된 CaF2 단결정 웨이퍼를 이용하여 면 방향에 따른 결정성, 광학적 특성을 분석하였다. 특히 chemical etching을 통해 etch pit의 형태가 면 방향에 따라 다르게 나타나는 것을 확인하였고, 결함 분석을 통해 결정 내 전위의 배열과 결함의 존재가 etch pit 형상에 영향을 주는 것을 확인하였다.

다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석 (Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure)

  • 장희연;최수민;박미선;정광희;강진기;이태경;김형재;이원재
    • 한국결정성장학회지
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3는 ~4.8 eV의 넓은 밴드 갭과 8 MV/cm의 높은 항복 전압을 가지는 물질로 전력소자의 응용 분야에서 많은 주목을 받고 있다. 또한, 대표적인 WBG 반도체 소재인 SiC, GaN, 다이아몬드 등과 비교했을 때, 높은 성장률과 낮은 제조 비용으로 단결정 성장이 가능하다는 장점을 가진다[1-4]. 본 연구에서는 다중 슬릿 구조를 이용한 EFG(Edge-defined Film-fed Growth) 법을 통해 SnO2 0.3 mol% 도핑된 10 mm 두께의 β-Ga2O3 단결정을 성장시키는 데에 성공했다. 성장 방향과 성장 면은 각각 [010]/(001)로 설정하였으며 성장 속도는 약 12 mm/h이다. 성장시킨 β-Ga2O3 단결정은 다양한 결정면(010, 001, 100, ${\bar{2}}01$)으로 절단하여 표면 가공을 진행하였다. 가공이 완료된 샘플은 XRD, UV/VIS/NIR Spec., Mercury Probe, AFM, Etching 등의 분석을 통해 결정면에 따른 특성을 비교하였다. 본 연구는 고전압 및 고온 응용 분야에서 전력반도체 기술의 발전에 기여할 것으로 기대되며 더 나은 특성의 기판을 선택하는 것은 소자의 성능과 신뢰성을 향상시키는데에 중요한 역할을 할 것이다.

고효율 파워 반도체 소자를 위한 Mg-doped AlN 에피층의 HVPE 성장 (HVPE growth of Mg-doped AlN epilayers for high-performance power-semiconductor devices)

  • 배숭근;전인준;양민;이삼녕;안형수;전헌수;김경화;김석환
    • 한국결정성장학회지
    • /
    • 제27권6호
    • /
    • pp.275-281
    • /
    • 2017
  • AlN는 넓은 밴드 갭 및 높은 열전도율로 인해 넓은 밴드 갭 및 고주파 전자 소자로 유망한 재료이다. AlN은 전력 반도체의 재료로서 더 큰 항복전압과 고전압에서의 더 작은 특성저항의 장점을 가지고 있다. 높은 전도도를 갖는 p형 AlN 에피층의 성장은 AlN 기반 응용 제품 제조에 중요하다. 본 논문에서는 Mg이 도핑된 AlN 에피층을 혼합 소스 HVPE에 의해 성장하였다. Al 및 Mg 혼합 금속은 Mg-doped AlN 에피 층의 성장을 위한 소스 물질로 사용하였다. AlN 내의 Mg 농도는 혼합 소스에서 Mg 첨가 질량의 양을 조절함으로써 제어되었다. 다양한 Mg 농도를 갖는 AlN 에피 층의 표면 형태 및 결정 구조는 FE-SEM 및 HR-XRD에 의해 조사하였다. Mg-doped AlN 에피 층의 XPS 스펙트럼으로 부터 혼합 소스 HVPE에 의해 Mg을 AlN 에피 층에 도핑할 수 있음을 증명하였다.

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF

Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hea;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2004
  • Zinc sulfide is a semiconductor with wide band gap and high refractive index and hence promising material to be used as ARC on commercial silicon solar cells. Uniform deposition of zinc sulfide (ZnS) by using chemical bath deposition (CBD) method over a large area of silicon surface is an emerging field of research because ZnS film can be used as a low cost antireflection coating (ARC). The main problem of the CBD bath process is the huge amount of precipitation that occurs during heterogeneous reaction leading to hamper the rate of deposition as well as uniformity and chemical stoichiometry of deposited film. Molar concentration of thiorea plays an important role in varying the percentage of reflectance and refractive index of as-deposited CBD ZnS film. Desirable rate of film deposition (19.6 ${\AA}$ / min), film uniformity (Std. dev. < 1.8), high value of refractive index (2.35), low reflectance (0.655) have been achieved with proper optimization of ZnS bath. Decrease in refractive index of CBD ZnS film due to high temperature treatment in air ambiance has been pointed out in this paper. Solar cells of conversion efficiency 13.8 % have been successfully achieved with a large area (103 mm ${\times}$ 103 mm) mono-crystalline silicon wafers by using CBD ZnS antireflection coating in this modified approach.

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제7권1호
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

중성자선과 감마선 동시측정이 가능한 휴대용 계측시스템 개발에 관한 연구 (Development of a Portable Detection System for Simultaneous Measurements of Neutrons and Gamma Rays)

  • 김희경;홍용호;정영석;김재현;박수연
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권6호
    • /
    • pp.481-487
    • /
    • 2020
  • Radiation measurement technology has steadily improved and its usage is expanding in various industries such as nuclear medicine, security search, satellite, nondestructive testing, environmental industries and the domain of nuclear power plants (NPPs). Especially, the simultaneous measurements of gamma rays and neutrons can be even more critical for nuclear safety management of spent nuclear fuel and monitoring of the nuclear material. A semiconductor detector comprising cadmium, zinc, and tellurium (CZT) enables to detect gamma-rays due to the significant atomic weight of the elements via immediate neutron and gamma-ray detection. Semiconductor sensors might be used for nuclear safety management by monitoring nuclear materials and spent nuclear fuel with high spatial resolution as well as providing real-time measurements. We aim to introduce a portable nuclide-analysis device that enables the simultaneous measurements of neutrons and gamma rays using a CZT sensor. The detector has a high density and wide energy band gap, and thus exhibits highly sensitive physical characteristics and characteristics are required for performing neutron and gamma-ray detection. Portable nuclide-analysis device is used on NPP-decommissioning sites or the purpose of nuclear nonproliferation, it will rapidly detect the nuclear material and provide radioactive-material information. Eventually, portable nuclide-analysis device can reduce measurement time and economic costs by providing a basis for rational decision making.