• 제목/요약/키워드: wick

Search Result 168, Processing Time 0.109 seconds

Experimental Investigation on Thermal Characteristics of Heat Pipes Using Water-based MWCNT Nanofluids (물 기반 탄소나노튜브 나노유체 히트파이프의 열적 특성에 관한 실험적 해석)

  • Ha, Hyo-Jun;Kong, Yu-Chan;Do, Kyu-Hyung;Jang, Seok-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.528-534
    • /
    • 2011
  • In this paper, thermal characteristics of cylindrical grooved wick heat pipes with water-based MWCNT nanofluids as working medium are experimentally investigated. Volume fractions of nanoparticles are varied with 0.1% to 0.5%. Transient hot wire method developed in house is used to measure the thermal conductivity of nanofluids. It is enhanced by up to 29% compared to that of DI water. The thermal resistances and temperature distributions at the surface of the heat pipes are measured at the same evaporation temperature. The experimental results show that the thermal resistance of the heat pipes with water-based MWCNT nanofluids as working fluid is reduced up to 35.2% compared with that of heat pipe using DI water. The reduction rate of thermal resistance is greater than the enhancement rate of thermal conductivity. Finally, based on the experimental results, we present the reduction of the thermal resistances of the heat pipes compared with conventional heat pipes cannot be explained by only the thermal conductivity of water-based MWCNT nanofluids.

An Experimental Study on the Utilization of Heat Pipes for Solar Water Heaters (히이트파이프를 이용한 태양열 온수급탕 시스템에 관한 기초 실험 연구)

  • Chun, Won-Gee;Kang, Yong-Heack;Jeon, Myung-Seok;Kwak, Hee-Youl
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.3-11
    • /
    • 1995
  • This paper reports the performance of solar domestic hot water systems manufactured with heat pipes. A series of tests were conducted on a number of systems to elicit the most suitable configuration of the system for possible commercialization in Korea. The heat pipe is made with a copper tube and the respective length of the evaporator, adiabatic, and condenser sections are 1700mm, 100mm and 200mm. The evaportor section is finned with a copper plate to increase solar input for its proper operation as a heat pipe. Results show quite an interesting performance data stemming from the difference in working fluids, presence of wick, and other various design parameters associated with the collection and utilization of solar energy.

  • PDF

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

Selection of Vegetables and Fertigation Methods for Veranda Gardening (베란다 재배에 적합한 채소작물 및 관비방법 선발)

  • Moon, Ji-Hye;Lee, Sang-Gyu;Jang, Yoon-Ah;Lee, Woo-Moon;Lee, Ji-Weon;Kim, Seung-Yu;Park, Hyun-Jun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • This study was conducted to select leaf vegetables suitable for cultivation in apartment verandas and simple and easy fertigation method for home gardening. In order to develop the convenient fertigation method, hydroponics, wick irrigation, and overhead irrigation methods were compared. For the wick irrigation, two types of nutrient sources were used; one was slow release fertilizers mixed with medium and the other one was nutrient solution filled in container located under pots. The growth of leafy lettuce, leaf mustard, and leaf beet was better in both of the wick irrigation methods rather than in overhead irrigation and hydroponics. The wick irrigation method is very easy, so that it is expected to bring a good result from the cultivating and managing point of view, if it brings with commercialized system along with slow release fertilizer. As a result of investigation of environment such as temperature, relative humidity, and irradiance level in apartment verandas in autumn the highest irradiance level during a day was just 48% and 35% in verandas facing south and feeing southeast, respectively, comparing to that in greenhouse. The light environment was investigated as a limiting factor for vegetable growing in verandas. Therefore, to select the vegetables showing good growth under low irradiance environment, nine leaf vegetables such as romaine lettuce, lent lettuce, head lettuce, endive, pak-choi, leaf mustard, garland chrysanthemum, leaf beet, and Chinese chive were grown under 0%, 50%, 70%, 90% shading. Among them, Chinese chive showed the best growth under low irradiance levels. Endive showed line growth reduction according to shading degree, however, even under 90% shading condition, it showed good growth. And then leafy lettuce, garland chrysanthemum, and pak-choi followed. Therefore, these results will be of help in selecting vegetables for veranda gardening with different light levels.

Effects of Medium and Planting Density on Growth and Yield of Seed Potatoes Grown in a Wick Hydroponic System (배지 및 재식밀도가 심지양액재배 씨감자의 생육 및 수량에 미치는 영향)

  • Kim, Chan-Woo;Song, Chang-Khil;Park, Jung-Sik;Mun, Hyun-Ki;Kang, Young-Kil;Kang, Bong-Kyoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • This study was carried out in 2002 to determine the usefulness of Jeju scoria for a component of a growth medium and optimum planting density of 'Dejima' seed potatoes (Solanum tuberosum L.) grown in a wick hydroponic system. The minitubers ($7.0{\pm}0.2\;g$) produced in an aeroponics system were planted at five planting densities (3 to 15 tubers/box; 19 to $95\;tubers/m^2$) in polystyrene boxes (51 cm long $\times$ 31 cm wide $\times$ 20 cm high) containing two media (perlite + peatmoss and Jeju scoria + peatmoss 1:2, v/v mixtures). There were no significant interactions between medium and planting density for the growth and tuber yield traits. Shoot growth and the number of tubers per plant were not significantly affected by the media. However, tuber yield was higher in the perlite + peatmoss mixture than in the Jeju scoria + peatmoss mixture. The percentage of underdeveloped plants ranged from 8.3 to 14.7% at four lower planting densities (3 to 12 tubers/ box), and was 25.8% at the highest planting density (15 tubers/box). As planting density was increased from 3 to 15 tubers per box, seed potato (${\geq}5\;g$ tuber) number increased from 101 to 269 and yield from 6.3 to $11.6\;kg/m^2$. These results indicate that the perlite + peatmoss mixture might be more suitable for seed potato production in the wick hydroponic system, and considering the percentage of underdeveloped plants and tuber yield, optimum planting density would be 56 to $76\;tubers/m^2$ in the system depending on availability of seed potatoes.

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

A Study on Thermal Performance of Heat Pipe for Optimum Placement of Satellite Equipment

  • Park, Jong-Heung
    • ETRI Journal
    • /
    • v.19 no.2
    • /
    • pp.59-70
    • /
    • 1997
  • A study on the operation of a heat pipe with two heat sources has been performed to optimize the heat distribution of satellite equipment. A numerical modeling is used to predict the temperature profile for the heat pipe assuming cylindrical two-dimensional laminar flow for the vapor, and the conduction heat transfer for the wall and wick. An experimental study using the copper-water heat pipe with the length of 0.45 m has been performed to evaluate the numerical model and to compare the temperature distribution at the outer wall for the non-uniform heat distribution. The results on temperature profiles for the heat input range from 29 W to 47 W on each heater are presented. Also the correlation between the heat input and the temperature increase is presented for the optimum distribution on two heaters. The result shows that the outer wall temperature can be controlled by redistribution of heat sources. It is also concluded that the heat source closer to the condenser can carry more heat while maintaining lower temperatures at the outer wall.

  • PDF

Noninvasive measuring;Detections of materials and quantities on eddy current testing

  • Obayashi, Koji;Tamura, Muneyoshi;Zhang, X.;Aoyama, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1555-1560
    • /
    • 2004
  • We made a simplified eddy-current-tester, and observed some materials for the ingredients and mass and locations. The tester detects the current as frequency shifts of a LC-resonance circuit, which are caused by the eddy currents. Using air-wick coil and a multi-piled ceramic capacitor, we made a resonance system whose frequency was 100KHz. The shift quantity is few; so, to detect it, we used a frequency counter, and counted the shift. We can detect 10Hz order's shift.

  • PDF

Transient Heat Transfer for the Evaporators of Capillary Pumped Loop at Intial Startup (초기시동 시의 모세펌핑 루프 증발기에 대한 과도열전달 해석)

  • Park, Byung-Kyu;Kim, Geun-Oh;Kim, Moo-Geun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.252-259
    • /
    • 2001
  • It is derived for the temperature profile in a cylindrical and planar shape capillary pumped loop evaporators subject to a uniform heat flux prior to the initiation of boiling using the finite difference method. The results of the analysis allow for the determination of applied power levels for which nucleation is likely to occur only within the vapor grooves of the evaporator while maintaining subcooling in the liquid core, thereby increasing the likelihood of a successful startup. Also, limits are found for which additional increases in the applied heat flux do not increase the temperature difference between the vapor grooves and the wick-liquid core interface. Several advantages of larger diameter evaporators observed experimentally in startup are explained and quantified by the model. This analysis is appropriate for standard capillary pumped loop evaporators during a fully-flooded startup as well as starter pump designs and loop heat pipes.

  • PDF