• Title/Summary/Keyword: whole-cell patch clamp

Search Result 200, Processing Time 0.024 seconds

Direct Block of Cloned $K^+$ Channels, Kv1.5 and Kv1.3, by Cyclosporin A, Independent of Calcineurin Inhibition

  • Choi, Bok-Hee;Hahn, Sang-June
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.353-361
    • /
    • 2005
  • The interaction of cyclosporine A (CsA), an immunosuppressant, with rat brain Kv1.5 (Kv1.5) channels, which were stably expressed in Chinese hamster ovary cells, was investigated using the whole-cell patch-clamp technique. CsA reversibly blocked Kv1.5 currents at +50 mV in a reversible concentrationdependent manner with an apparent $IC_{50}$ of 1.0μM. Other calcineurin inhibitors (cypermethrin, autoinhibitory peptide) had no effect on Kv1.5 and did not prevent the inhibitory effect of CsA. Fast application of CsA led to a rapid and reversible block of Kv1.5, and the onset time constants of the CsA-induced block were decreased in a concentration-dependent manner. The CsA-induced block of Kv1.5 channels was voltage-dependent, with a steep increase over the voltage range of channel opening. However, the block exhibited voltage independence over the voltage range in which channels were fully activated. The rate constants for association and dissociation of CsA were $7.0{\mu}M{-1}s^{-1}$ and $8.1s^{-1}$, respectively. CsA slowed the deactivation time course, resulting in a tail crossover phenomenon. Block of Kv1.5 by CsA was use-dependent. CsA also blocked Kv1.3 currents at +50 mV in a reversible concentration-dependent manner with an apparent $IC_{50}$ of $1.1{\mu}M$. The same effects of CsA on Kv1.3 were also observed in excised inside-out patches when applied to the internal surface of the membrane. The present results suggest that CsA acts directly on Kv1.5 currents as an open-channel blocker, independently of the effects of CsA on calcineurin activity.

Wide Spectrum of Inhibitory Effects of Sertraline on Cardiac Ion Channels

  • Lee, Hyang-Ae;Kim, Ki-Suk;Hyun, Sung-Ae;Park, Sung-Gurl;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.327-332
    • /
    • 2012
  • Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In these experiments, we have used the whole cell patch clamp technique to examine the effects of sertraline on the major cardiac ion channels expressed in HEK293 cells and the native voltage-gated $Ca^{2+}$ channels in rat ventricular myocytes. According to the results, sertraline is a potent blocker of cardiac $K^+$ channels, such as hERG, $I_{Ks}$ and $I_{K1}$. The rank order of inhibitory potency was hERG > $I_{K1}$ > $I_{Ks}$ with $IC_{50}$ values of 0.7, 10.5, and 15.2 ${\mu}M$, respectively. In addition to $K^+$ channels, sertraline also inhibited $I_{Na}$ and $I_{Ca}$, and the $IC_{50}$ values are 6.1 and 2.6 ${\mu}M$, respectively. Modification of these ion channels by sertraline could induce changes of the cardiac action potential duration and QT interval, and might result in cardiac arrhythmia.

Testosterone Relaxes Rabbit Seminal Vesicle by Calcium Channel Inhibition

  • Kim, Jong-Kok;Han, Woo-Ha;Lee, Moo-Yeol;Myung, Soon-Chul;Kim, Sae-Chul;Kim, Min-Ky
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.73-77
    • /
    • 2008
  • Recent studies have documented that testosterone relaxes several smooth muscles by modulating $K^+$ channel activities. Smooth muscles of seminal vesicles playa fundamental role in ejaculation, which might involve testosterone. This study was aimed to assess the role of testosterone in seminal vesicular motility by studying its effects on contractile agents and on the ion channels of single vesicular myocytes in a rabbit model. The contractile responses of circular smooth muscle strips of rabbit seminal vesicles to norepinephrine ($10{\mu}M$), a high concentration of KCI (70 mM), and testosterone ($10{\mu}M$) were observed. Single vesicular myocytes of rabbit were isolated using proteolytic enzymes including collagenase and papain. Inside-out, attached, and whole-cell configurations were examined using the patch clamp technique. The applications of $10{\mu}M$ norepinephrine or 70 mM KCl induced tonic contractions, and $10{\mu}M$ testosterone (pharmacological concentration) evoked dose-dependent relaxations of these precontracted strips. Various $K^+$ channel blockers, such as tetraethylammonium (TEA; $10{\mu}M$), iberiotoxin ($0.1{\mu}M$), 4-aminopyridine (4-AP, $10{\mu}M$), or glibenclamide ($10{\mu}M$) rarely affected these relaxations. Single channel data (of inside-out and attached configurations) of BK channel activity were also hardly affected by testosterone ($10{\mu}M$). On the other hand, however, testosterone reduced L-type $Ca^{2+}$ currents significantly, and found to induce acute relaxation of seminal vesicular smooth muscle and this was mediated, at least in part, by $Ca^{2+}$ current inhibition in rabbit.

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

Inhibitory and Excitatory Postsynaptic Currents of Medial Vestibular Nucleus Neurons of Rats

  • Chun, Sang-Woo;Choi, Jeong-Hee;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The medial vestibular nucleus (MVN) neurons are controlled by excitatory synaptic transmission from the vestibular afferent and commissural projections, and by inhibitory transmission from interneurons. Spontaneous synaptic currents of MVN neurons were studied using whole cell patch clamp recording in slices prepared from 13- to 17-day-old rats. The spontaneous inhibitory postsynaptic currents (sIPSCs) were significantly reduced by the $GABA_A$ antagonist bicuculline ($20{\mu}M$), but were not affected by the glycine antagonist strychnine ($1{\mu}M$). The frequency, amplitude, and decay time constant of sIPSCs were $4.3{\pm}0.9$ Hz, $18.1{\pm}2.0$ pA, and $8.9{\pm}0.4$ ms, respectively. Spontaneous excitatory postsynaptic currents (sEPSCs) were mediated by non-NMDA and NMDA receptors. The specific AMPA receptor antagonist GYKI-52466 ($50{\mu}M$) completely blocked the non-NMDA mediated sEPSCs, indicating that they are mediated by an AMPA-preferring receptor. The AMPA mediated sEPSCs were characterized by low frequency ($1.5{\pm}0.4$ Hz), small amplitude ($13.9{\pm}1.9$ pA), and rapid decay kinetics ($2.8{\pm}0.2$ ms). The majority (15/21) displayed linear I-V relationships, suggesting the presence of GluR2-containing AMPA receptors. Only 35% of recorded MVN neurons showed NMDA mediated currents, which were characterized by small amplitude and low frequency. These results suggest that the MVN neurons receive excitatory inputs mediated by AMPA, but not kainate, and NMDA receptors, and inhibitory transmission mediated by $GABA_A$ receptors in neonatal rats.

Antidepressant drug paroxetine blocks the open pore of Kv3.1 potassium channel

  • Lee, Hyang Mi;Chai, Ok Hee;Hahn, Sang June;Choi, Bok Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to high-frequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an $IC_{50}$ value of $9.43{\mu}M$ and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding ($k_{+1}$) and unbinding ($k_{-1}$) rate constants for the paroxetine effect were $4.5{\mu}M^{-1}s^{-1}$ and $35.8s^{-1}$, respectively, yielding a calculated $K_D$ value of $7.9{\mu}M$. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a use-dependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.

Chelidonine blocks hKv 1.5 channel current

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Young-Geun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.112-112
    • /
    • 2003
  • Voltage-gated $K^{+}$ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. These channels play an important role in determining the length of the cardiac action potential and are the targets for antiarrhythmic drugs. Many $K^{+}$ channel genes have been cloned from human myocardium and functionally contribute to its electrical activity. One of these channels, Kv1.5, is one of the more cardiovascular-specific $K^{+}$ channel isoforms identified to date and forms the molecular basis for an ultra-rapid delayed rectifier $K^{+}$ current found in human atrium. Thus, the blocker of hKv1.5 is expected to be an ideal antiarrhythmic drug for atrial fibrillation. Chelidonine was isolated from Chelidonium majus L. We examined the effect of chelidonine on the hKv1.5 current expressed in Ltk-cells using whole cell mode of patch clamp techniques. Chelidonine selectively inhibited the hKv1.5 current expressed in Ltk-cells in a concentration-dependent manner, whereas did not affect the HERG current expressed in HEK-293 cells. Additionally, chelidonine reduced the tail current amplitude recorded at -50 mV after 250 ms depolarizing pulses to +60 mV, and slowed the deactivation time course resulting in a 'crossover' phenomenon when the tail currents recorded under control conditions and in the presence of chelidonine were superimposed. We found that chelidonine also inhibited the $K^{+}$ current in isolated human atrial myocytes where hKv1.5 channels were predominantly expressed. Furthermore, we examined the effects of chelidonine on the action potentials in rabbit hearts using conventional microelectrode technique. Chelidonine prolonged the action potential durations (APD) of atrial, ventricular myocytes and Purkinje fibers in a dose-dependent manner. However, the effect of chelidonine on atrial APD was frequency-dependent whereas the effect of chelidonine on the APDs of ventricular myocytes and Purkinje fibers was not frequency- dependent. Also, the selective action of chelidonine on heart was more potent than dofetilide, $K^{+}$ channel blocker.

  • PDF

Calcium Channel Subtype in Rat Adrenal Chromaffin Cells (흰쥐 부신수질 크로마핀세포의 칼슘통로 유형)

  • Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.59-70
    • /
    • 2001
  • Adrenal chromaffin cells secrete catecholamine in response to acetylcholine. The secretory response has absolute requirement for extracellular calcium, indicating that $Ca^{2+}$ influx through voltage operated $Ca^{2+}$ channels is the primary trigger of the secretion cascade. Although the existence of various types of $Ca^{2+}$ channels has been explored using patch clamp technique in adrenal chromaffin cells, there is still disagreement with the types of $Ca^{2+}$ channels existed in different species. Therefore, we have tried to identify several distinct types of $Ca^{2+}$ channels in rat chromaffin cells. By using nicardipine(L type channel blocker), $\omega$-CgTx GVIA(N type channel blocker), and $\omega$-AgaTx VIA(P type channel blocker), it was identified that L, N, and P type $Ca^{2+}$ channel exist in rat adrenal chromaffin cells and the order of contribution of each channel type to whole cell $Ca^{2+}$ current was L type> N type> P type. type> P type.

  • PDF

Forskolin Enhances Synaptic Transmission in Rat Dorsal Striatum through NMDA Receptors and PKA in Different Phases

  • Cho, Hyeong-Seok;Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Jeun, Seung-Hyun;Li, Qing-Zhong;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.293-297
    • /
    • 2008
  • The effect of forskolin on corticostriatal synaptic transmission was examined by recording excitatory postsynaptic currents (EPSCs) in rat brain slices using the whole-cell voltage-clamp technique. Forskolin produced a dose-dependent increase of corticostriatal EPSCs (1, 3, 10, and $30{\mu}M$) immediately after its treatment, and the increase at 10 and $30{\mu}M$ was maintained even after its washout. When the brain slices were pre-treated with (DL)-2-amino-phosphonovaleric acid (AP-V, $100{\mu}M$), an NMDA receptor antagonist, the acute effect of forskolin ($10{\mu}M$) was blocked. However, after washout of forskolin, an increase of corticostriatal EPSCs was still observed even in the presence of AP-V. When KT 5720 ($5{\mu}M$), a protein kinase A (PKA) inhibitor, was applied through the patch pipette, forskolin ($10{\mu}M$) increased corticostriatal EPSCs, but this increase was not maintained. When forskolin was applied together with AP-V and KT 5720, both the increase and maintenance of the corticostriatal EPSCs were blocked. These results suggest that forskolin activates both NMDA receptors and PKA, however, in a different manner.

Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons

  • Li, Hai Ying;Lee, Byung-Ky;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.315-321
    • /
    • 2008
  • Eugenol is widely used in dentistry to relieve pain. We have recently demonstrated voltage-gated $Na^+$ and $Ca^{2+}$ channels as molecular targets for its analgesic effects, and hypothesized that eugenol acts on $P2X_3$, another pain receptor expressed in trigeminal ganglion (TG), and tested the effects of eugenol by whole-cell patch clamp and $Ca^{2+}$ imaging techniques. In the present study, we investigated whether eugenol would modulate 5'-triphosphate (ATP)-induced currents in rat TG neurons and $P2X_3$-expressing human embryonic kidney (HEK) 293 cells. ATP-induced currents in TG neurons exhibited electrophysiological properties similar to those in HEK293 cells, and both ATP- and $\alpha$, $\beta$-meATP-induced currents in TG neurons were effectively blocked by TNP-ATP, suggesting that $P2X_3$ mediates the majority of ATP-induced currents in TG neurons. Eugenol inhibited ATP-induced currents in both capsaicin-sensitive and capsaicin-insensitive TG neurons with similar extent, and most ATP-responsive neurons were IB4-positive. Eugenol inhibited not only $Ca^{2+}$ transients evoked by $\alpha$, $\beta$-meATP, the selective $P2X_3$ agonist, in capsaicin-insensitive TG neurons, but also ATP-induced currents in $P2X_3$-expressing HEK293 cells without co-expression of transient receptor potential vanilloid 1 (TRPV1). We suggest, therefore, that eugenol inhibits $P2X_3$ currents in a TRPV1-independent manner, which contributes to its analgesic effect.