• Title/Summary/Keyword: whole body tilt

Search Result 15, Processing Time 0.024 seconds

The Effect of Visual Biofeedback on EMG Activity of Trunk Muscles and Endurance Holding Time for Correct Position During Whole-Body Tilt Exercise (전신 기울기 운동 시 시각적 바이오피드백이 올바른 자세 유지 시간과 체간 근육의 근활성도에 미치는 영향)

  • Kang, Min-Hyeok;Yoon, Ji-Yeon;Yang, Jae-Lak;Jang, Jun-Hyeok;Jung, Doh-Heon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • The purpose of this study was to assess visual biofeedback's influence on trunk muscles' (EMG) activity and endurance holding time for correct position during whole-body tilt exercise. For the study, we recruited 14 volunteers who showed no symptom of lumbar disease during medical tests. We measured the EMG activity of their rectus abdominis, external abdominal oblique, internal abdominal oblique and erector spinae muscles, and their endurance holding time for correct position during $40^{\circ}$ anterior and posterior whole-body tilt under two conditions: whole-body tilt with and without visual biofeedback. Resistance with gravitational force on the trunk during whole-body tilt was applied by using a device that had a monitor on which the subjects could check their alignment and that sounded an alarm if a subject's alignment collapsed. The study showed an increase in the EMG activity of external abdominal oblique, internal abdominal oblique/rectus abdominis ratio and endurance holding time for correct position during both $40^{\circ}$ anterior and posterior whole-body tilt with visual biofeedback compared with without visual biofeedback (p<.05). We suggest that the whole-body tilt exercise with visual biofeedback could be a beneficial strategy for selectively strengthening the internal abdominal oblique muscle and minimizing the rectus abdominis muscle's activity while maintaining correct alignment during whole-body tilt exercise.

Effects of Whole Body Tilt Exercise with Visual Feedback on Trunk Control, Strength, and Balance in Patients with Acute Stroke: a Randomized Controlled Pilot Study (시각적 피드백을 이용한 전신 기울기 운동이 급성기 뇌졸중 환자의 체간 조절, 근력 및 균형에 미치는 효과: 무작위 대조군 예비연구)

  • Jung, Kyeoung-Man
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 2018
  • PURPOSE: This study was conducted to determine the effects of whole-body tilt exercise with visual feedback on trunk control, strength, and balance in patients with acute stroke. METHODS: The study included 18 patients with acute stroke who were randomly allocated to a Whole Body Tilt Exercise Group (WBTEG, N=9) and a General Trunk Exercise Group (GTEG, N=9). The WBTEG conducted whole-body tilt exercises with visual feedback, and the GTEG performed general trunk exercises. Both groups performed the exercises five times a week for 4 weeks. Outcomes were assessed using the trunk impairment scale (TIS), the trunk flexor and extensor strength test, the static balance test, and the Brunel Balance Assessment. RESULTS: After 4 weeks of intervention, both groups showed significantly improved TIS scores, muscle strength, and balance components (p<.05 in both groups). However, the improvement in TIS, muscle strength, and static balance in the WBTEG was significantly better than that in the GTEG (p<.05). CONCLUSION: Although both groups in this study showed post-intervention improvement, patients from the WBTEG who received visual feedback demonstrated more improvement. These findings indicate that whole-body tilt exercise with visual feedback may be effective at improving trunk control, trunk muscle strength, and balance in patients with acute stroke. Further studies are needed to gain a better understanding of the effectiveness of whole-body tilt exercise in patients with acute stroke.

Core muscle Strengthening Effect During Spine Stabilization Exercise

  • Han, Kap-Soo;Nam, Hyun Do;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2413-2419
    • /
    • 2015
  • Core spinal muscles are related to trunk stability and assume the main role of stabilizing the spine during daily activities; strengthening of core muscles around the spine can therefore reduce the chance of back pain. The objective of the study was to investigate the effect of core muscle strengthening in the spine during spine stabilization exercise using a whole body tilt device. To achieve this, a validated musculoskeletal (MS) model of the whole body was used to replicate the input motion from the whole body tilting exercise. An inverse dynamics analysis was executed to estimate spine loads and muscle forces depending on the tilting angles of the exercise device. The activation of long and superficial back muscles such as the erector spinae (iliocostalis and longissimus) were mainly affected by the forward direction (-40°) of the tilt, while the front muscles (psoas major, quadratus lumborum, and external and internal obliques) were mainly affected by the backward tilting direction (40°). Deep muscles such as the multifidi and short muscles were activated in most directions of the rotation and tilt. The backward directions of the tilt using this device could be carefully applied for the elderly and for rehabilitation patients who are expected to have less muscle strength. In this study, it was shown that the spine stabilization exercise device can provide considerable muscle exercise effect.

Changes of Muscle Activation Pattern of Trunk Muscles during Whole-body Tilts with and without Axial Rotation (전신 기울임 운동시 축 회전 유무에 따른 체간근 활성도 변화)

  • Kim, Sol-Bi;Chang, Yun-Hee;Kim, Shin-Ki;Bae, Tae-Soo;Mun, Mu-Seong;Park, Jong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.805-810
    • /
    • 2012
  • Determining of the exercise intensity is very important in terms of induction of low fatigue during exercise. Little information is available on the contraction level of the trunk muscles during whole body tilts with and without axial rotation. This study was to investigate the difference muscle activation level according to axial rotation. Twenty subjects were participated. The muscle activities of the five trunk muscles were bilaterally measured at eight axial rotation angles with 12 tilt angles along $15^{\circ}$ intervals. The results showed that tilt with $45^{\circ}$ axial rotation was more balanced in the same tilt angle and was maintained approximately level of 40% MVC at over $60^{\circ}$ tilt angle with respect to co-contraction of abdominal and back muscle. Lumbar stabilization exercise using whole body tilts would be more effective with axial rotation than without axial rotation in terms of muscle co-contraction.

Motion Analysis of Kolman Technique by Korean Top Gymnasts on Horizontal Bar (국내 우수선수들의 철봉 Kolman 기술 동작 분석)

  • Lim, Kyu-Chan;Lee, Nam-Koo
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.283-289
    • /
    • 2021
  • Objective: The aim of this study was to analyze the pattern of Kolman technique by five Korean top gymnasts including the three national athletes on horizontal bar. Method: Two digital high-speed camcorders were used with 90 frames/sec and their Kolman motions were filmed in sports science secondary school gymnasium at U city. After the kinematic and kinetic variables were carried out by Kwon3D 3.1 motion package during the whole phase, the optimized release motion was investigated by simulating the body COG path during the aerial phase. Results: Firstly, it was revealed that the average changes of hip, shoulder joint angle were 84 deg, 53 deg respectively during the functional sub-phase and the average swing phaseal time was 1.21 s. Secondly, it was revealed that the average body COG positions and velocities (Y, Z) at release were -0.65 m, 0.48 m, 1.65 m/s, 3.97 m/s respectively and the average release angle, peak height and flight time were 67 deg, 1.29 m, 0.79 s respectively. Thirdly, it was revealed that the directions of somersault of whole and lower body, tilt of lower body were counterclockwise, whereas the directions of tilt of whole body, twist of whole and lower body were clockwise at the ready for re-grasp. Lastly, it was revealed that the body COG paths were different from each other during the aerial phase followed by the different body COG velocities. Conclusion: Korean gymnasts of this study controlled their motions well in terms of the timing of hip·shoulder joint, body position, body angular momentum especially during the functional sub-phase, but their motions were different during the aerial phase. Nonetheless most of them made the adequate body position at the instant of re-grasp. It would be suggested that Korean gymnasts except S3 should increase the vertical velocity.

Comparison of Orbit-attitude Model between Spot and Kompsat-2 Imagery (Spot 영상과 Kompsat-2 영상에서의 궤도 자세각 모델의 성능 비교)

  • Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 2009
  • This paper describes differences of performance when the orbit attitude model is applied to the respective images obtained from two different types of satellite. The one is Spot that rotates its pointing mirror and the other is Kompsat-2 that rotates its whole body when they obtain imagery for target. Our research scope is limited to the orbit-attitude model only as its good performance was proved in prior investigation. Model performances between two images were compared with sensor model accuracy and 3D coordinates calculation. The results show performances of the orbit-attitude model for each image type were different. For Spot imagery, the model required attitude angle to be included as adjustment parameters. For Kompsat-2 imagery, the model required high-order parameter for adjustment. This implies that satellite sensor model may be applied differently in accordance with platform's attitude control scheme and accuracy. Understanding of this information can be a base for improvement and development of model and application for new satellite images.

Kinematical Analysis of Somersault with Twist in Men's Vault: Focusing on the Lou Yun and Akopian Motions

  • Lim, Kyu-Chan;Park, Hyung Suh
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.243-248
    • /
    • 2016
  • Objective: The aim of this study was to determine the kinematical characteristics of somersault with twist in the Lou Yun and Akopian motions and to provide useful information to gymnastic athletes in men's vault. Method: The study subjects were 12 male adult top athletes. After 12 trials (7 Lou Yun and 5 Akopian trials) filmed by using two digital high-speed camcorders set at 90 frames/sec, kinematical data were collected through the direct linear transformation (DLT) method. The mean differences in biomechanical variables were compared during the second flight upward phase. The kinematic characteristics of somersault with twist in the Lou Yun and Akopian motions were identified. Results: In Lou Yun motion, the vertical release velocity through horse breaking was not difficult to obtain, so the athletes had enough time to prepare for the twist. Therefore, the Lou Yun motion has an advantage to make a cat twist in the pike posture. In the Akopian motion, obtaining the horizontal velocity through horse pushing was so easy that the Akopian athletes attained a large angular impulse and angular momentum. Therefore, the Akopian motion has an advantage to making a tilt twist in the body tilting posture. Conclusion: This study suggests that gymnastic athletes should control their body segment movements in order to increase the twisting angular velocity of the whole body, which requires regulation of the longitudinal moment of inertia of the body. Moreover, athletes should prepare for the shoulder and hip twists early in order to make the landing position in advance.

Automatic Person Identification using Multiple Cues

  • Swangpol, Danuwat;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1202-1205
    • /
    • 2005
  • This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.

  • PDF

Reliability and Convergent Validity of Standing Posture Measurement Using a Mobile Application in Forward Head Posture (전방머리자세 성인을 대상으로 모바일 어플리케이션을 이용한 자세정렬 측정의 신뢰도 및 수렴 타당도 연구)

  • Kang, Hyojeong;Kim, Minkyu;Yang, Hoesong;Lee, Wanhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • Purpose : The aim of this study was to assess the intra- and inter-rater reliability and validity of measurements of head, neck, and pelvis posture using a mobile application in subjects with forward head posture. Methods : Forty-eight volunteers (22 men, 26 women) participated in this study. Two raters independently examined whole body picture images in a lateral standing posture with arms crossed using a CA-Smart Posture Reminder (CA-SPR), and a rater took and calculated posture images twice to assess reliability. We measured five parameters: craniovertebral angle 1 (CVA1), anterior shoulder translation (AST), pelvic tilt (PT), knee angle (KA), and ankle angle (AA) in the subject's sagittal plane using CA-SPR. We examined whole spine X-ray images in the same position to assess validity. We measured four variables in the subjects: CVA2, translation distance (AHT), anterior pelvic plane (APP), and sacral slope (SS). The intra- and inter-rater reliability were calculated using the intraclass correlation coefficient (ICC). Convergent validity was calculated using Pearson's correlation coefficient. Results : The intra-rater reliability (ICC=.889 -.989) and inter-rater reliability (ICC=.800 -.980) were excellent for all variables measured using CA-SPR. The variables measured using CA-SPR and X-ray were significantly positively correlated (r=.623, p<.01). However, the correlation of the variables in the pelvis was not statistically significant. Conclusion : This study shows that a mobile application (CA-SPR) is a useful tool for measuring head and neck posture in subjects with forward head posture. However, further study is needed to measure pelvic variables when using a mobile application.