• Title/Summary/Keyword: white rot fungus

Search Result 223, Processing Time 0.023 seconds

Stem Rot of Tawny Daylily(Hemerocallis fulva) Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.32 no.2
    • /
    • pp.95-97
    • /
    • 2004
  • In July 2002, a destructive stem rot of tawny daylily(Hemerocallis fulva) was occurred sporadically in exhibition farm of Gyeongsangnam-do Agricultural Research and Extension Services located in Hamyang-gun, Korea. The fungus also caused collar and crown rot, and systemic wilt or blight of whole plant. White mycelium spread over stems and petioles of infected plants and sclerotia were formed on the old lesions and near the soil surface. The optimum temperature for mycelial growth and scierotial formations was $30^{\circ}C$ on PDA. The mycelial width ranged $4.2{\sim}10.4{\mu}m$ and the color was white, usually many narrow mycelial strand grew in the aerial mycelium and formed clamp connection. The shape of sclerotia was spherical and $1.0{\sim}3.2$ mm in diameter. The fungus was isolated repeatedly from the infected tissues and confirmed its pathogenicity to Hemerocallis fulva and identified as Sclerotium rolfsii. This is the first report on the stem rot of H. fulva caused by S. rolfsii in Korea.

Occurrence of Stem Rot of Disporum smilacinum Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Jee, Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.212-214
    • /
    • 2007
  • In 2005 and 2007, a basal stem rot of Disporum smilacinum caused by Sclerotium rolfsii occurred sporadically in a herb farm at Hamyang, Korea. The symptom initiated with water-soaking lesion and progressed into stem rot and wilt of a whole plant. Severely infected plants were blighted and died eventually. White mycelial mats appeared on the lesion at early stage and a number of sclerotia were formed on the stem near the soil line. The sclerotia were globoid in shape, 1-3 mm in size and white to brown in color. The optimum temperature for the growth and sclerotia formation was 30 on PDA and the hyphal width was measured $3-8{\mu}m$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. On the basis of symptom, mycological characteristics and pathogenicity to the host plant, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report on the stem rot of D. smilacinum caused by S. rolfsii in Korea.

Stem Rot of Strawberry Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Jeong, Sun-Ki;Son, Kyeng-Ae;Kim, Tae-Seung;Lee, Chun-Hee;Song, Geun-Woo;Park, Chang-Seuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.129.1-129
    • /
    • 2003
  • A destructive stem rot of strawberry (cv. Akihime) occurred sporadically in farmers' fields around Daegok-Myeon, Jinju City, Gyeongnam province in Korea. The infected plants showed stem and crown rot, sometimes whole plant blighted. White mycelia spread over stems of infected clones and sclerotia formed on the old lesions near to soil surface. The fungus formed white colony on PDA and showed maximum mycelial growth and scleotial formation around 30$^{\circ}C$. The fungus usually have many narrow mycelial strands in the aerial mycelium and the width were 4.0∼10.0$\mu\textrm{m}$. The typical clamp connections were formed on the mycelium. The shape of sclerotia was globoid and 1.0∼2.8 mm in size. The fungus was isolated repeatedly from the infected tissues and identified as Sclerotium rolfsii. The fungus was inoculated to strawberry and confirmed its pathogenecity This is the first report on the stem rot of strawberry caused by Scierotium rolfsii in Korea.

  • PDF

Occurrence of Stem Rot of Wild Aster(Aster koraiensis) Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Shen, Shun-Shan;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.58-60
    • /
    • 2001
  • A destructive stem rot of wild aster(Aster koraiensis) occurred sporadically some farmers' fields in Guman-myon, Kosonggun, Kyongsangnam-do in 2000. One of the most severely infected field in Kosong showed 28.6 percent of infection rate. The fungus also caused stem or crown rot and systemic wilt or blight of the plants. White mycelium spread over stems and petioles of infected plants and sclerotia formed on the old lesions and near the soil surface. The fungus showed maximum mycelial growth around $30^{\circ}C$ and did not grow under $5^{\circ}C$ and over $45^{\circ}C$ and mycelial width were $4.3{\sim}10.2{\mu}m$. Colony was white, usually many narrow mycelial stand in the aerial mycelium and formed clamp connection. Numerous sclerotia were formed on PDA at $30^{\circ}C$. The shape sclerotia were globoid and $0.8{\sim}3.0{\times}0.9{\sim}3.4$ mm in size. The fungus was isolated repeatedly from the infected tissues and confirmed its pathogenecity to wild aster and identified as Sclerotium rolfsii. This is the first report on the stem rot of wild aster caused by S. rolfsii in Korea.

  • PDF

Stem Rot of Tatarian Aster(Aster tataricus) Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.102-104
    • /
    • 2002
  • In July 2001, a destructive stem rot of tatarian aster(Aster taturicus) was occurred sporadically in exhibition farm of Gyeongsangnam-do Agricultural Research and Extension Services, in Hamyang, Korea. The fungus also caused collar and crown rot and systemic wilt or blight of whole plant. White mycelium spread over stems and petioles of infected plants and sclerotia formed on the old lesions and near the soil surface. The fungus showed maximum mycelial growth was obtained around $30^{\circ}C$ but did not grow below $5^{\circ}C$ or above $45^{\circ}C$. The mycelial width ranges $4.2{\sim}10.4{\mu}m$. and the color is white, usually many narrow mycelial stand grow in the aerial mycelium and formed clamp connection. Numerous sclerotia were formed in artificial media like PDA at $30^{\circ}C$. The shape of sclerotia were sphere and $1.0{\sim}3.2{\mu}m$ in diameter. The fungus was isolated repeatedly from the infected, tissues and confirmed its pathogenecity to aster and identified as Sclerotium rolfsii. This is the first report that Sclerotium rolfsii causes stem rot of tatarian aster in Korea.

Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won;Gwak, Ki-Seob;Park, Jun-Yeong;Park, Mi-Jin;Choi, Don-Ha;Kwon, Mi;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.485-491
    • /
    • 2007
  • The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

Trametes sp. CJ-105에 의한 염료의 색도제거

  • Kim, Hyun-Soo;Oh, Kwang-Keun;Lee, Cheol-Woo;Lee, Jae-Heung;Jeon, Yeong-Joong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.630-635
    • /
    • 1997
  • Decolorization of congo red, methyl orange, poly R478, remazol brilliant blue R and crystal violet by white-rot fungus Trametes sp. CJ-105, isolated in Korea, was investigated. Remazol blue and methyl orange were almost completely decolorized after 2 days of culture, but congo red, crystal violet and poly R478 were decolorized by about 80%, 40% and 30% after 10 days of culture, respectively. As a result of determination of cell mass and enzyme activity, it was shown that color removal efficiency was related to cell mass and enzyme activity, and also found that only laccase (E.C.1.10.3.2) activity was existed in the culture broth. The decolorization ratios of remazol blue in the concentrations of 100ppm to 3, 000 ppm were 85% and above after 2 days of culture. In this study, we found that white-rot fungus, Trametes sp. CJ-105, was effective in decolorizing a wide range of structurally different synthetic dyes.

  • PDF

Influence of Wood Decaying Fungi for Termite Ecology (목재부후균이 흰개미 서식에 미치는 영향)

  • Jo, Chang-Wook;Kim, Young-Hee;Hong, Jin-Young;Kim, Soo Ji;Lee, Jeung-Min;Choi, Jung-Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.99-108
    • /
    • 2012
  • The white-rot fungus (Trametes versicolor) and brown-rot fungus (Tyromyces palustris), which cause damage to a variety of wooden cultural properties and buildings, such as drying of the wood tissue, decay and cracks, sponge, and discoloration, give rise to serious structural and aesthetic problems. Moreover, pest termites (Reticulitermes speratus kyushuensis Morimoto) can cause damages like hollowing the outdoor beams or pillars of wooden buildings and finally causing such buildings to collapse due to the termites' destruction of the inside of the beams or pillars, leaving only a thin layer on their surfaces. This study was conducted to determine the impact of the wood-decay fungus, a representative damage-causing microorganism, and of insects and termites on the termite ecology. The damage ratio was calculated as the weight of the timber, and the overall total mass was reduced from two kinds of rot fungi. The white-rot fungi reduced the total wood mass, but the brown-rot fungi were observed to have had an increasing tendency to do so. The wood mass was measured after drying to determine the destruction capacity of termites. As a result, the wood mass consumed by the brown-rot fungi was shown to be greater.

  • PDF

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.

Stem Rot of Capsicum annuum Caused by Sclerotium relfsii in Korea (Sclerotium rolfsii에 의한 고추 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.21-24
    • /
    • 2004
  • A destructive stem rot of pepper (Capsicum annuum) was found from the often field sporadically in Jingyemyon, Hadong-gun in July 2002 and vinyl houses in Moonsan-eup, Jinju City in October 2003. The same fungus also caused collar and crown rot and systemic wilt or blight of whole plant. White mycelium spread over stems of infected plants and sclerotia formed on the old lesions and near the soil surface. The fungus showed maximum mycelial growth around 3$0^{\circ}C$. The mycelial color is white and width of hyphae ranges 3.6∼10.2 ${\mu}{\textrm}{m}$, and formed clamp connection. Numerous sclerotia were farmed in artificial media such as PDA at 3$0^{\circ}C$. The shape of sclerotia were sphere and 1.0∼2.1 mm in diameter, The fungus was isolated repeatedly from the infected tissues and the pathogenecity of fungus to pepper (Capsicum annuum) was confirmed, and identified as Sclerotium rolfsii. This is the first report on the stem rot of pepper (Capsicum annuum) caused by Sclerotium rolfsii in Korea.