• Title/Summary/Keyword: white matter injury

Search Result 30, Processing Time 0.159 seconds

Effects of Root of Scutellariae Radix against Inflammatory Response in the Spinal Cord Contusion Injury in Rats (척수압박손상 흰쥐의 척수조직 염증반응에 황금(黃芩)이 미치는 영향)

  • Yang, Kee-Young;Choi, Won-Ik;Shin, Jung-Won;Park, Seong-Ha;Kim, Seong-Joon;Lee, Jong-Soo;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • Objectives : This study was performed to evaluate the effects of root of Scutellariae Radix(SR) water extract against inflammatory response in the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rat. SR was orally given once a day for 7days after SCI. Myeloperoxidase(MPO) positive neutrophils infiltration was examined. Inducible nitric oxide synthase(iNOS) and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) expressions were observed with immunohistochemistry. Glial fibrillary acidic protein(GFAP) positive astrocytes were examined using immuno-fluorescence. Results : 1. SR reduced MPO-positive neutrophils infiltration in peri-damage regions of the contusive SCI-induced rats. 2. SR reduced iNOS positive cells in the white matter of the contusive SCI-induced rats. 3. SR reduced TNF-${\alpha}$ positive cells in the gray and white matter of the contusive SCI-induced rats. 4. SR reduced cell number and size of astrocytes in peri-damage regions of the contusive SCI-induced rats. Conclusions : These results suggest that SR plays an inhibitory role against inflammatory response in the SCI.

The Effects of Sustained Release Growth Hormone in the Repair of Neurological Deficits in Rats with the Spinal Cord Injury (척수손상 백서에서 서방형 성장호르몬의 투여가 신경회복에 미치는 영향)

  • Kim, Min Su;Heo, Jung;Kwon, Yong Seok;Lee, Keun Cheol;Kim, Seok Kwun
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.235-242
    • /
    • 2008
  • Purpose: Due to increasing interest in the treatment of spinal cord injuries, many histopathological studies have been conducted to prove that many neurotrophic factors including growth hormone are important for regeneration of the injured spinal cord. Growth hormone has to be given everyday, however, and this negatively affects compliance in clinical trials. Recently, the invention of sustained release growth hormone (SRGH) that can be given just once a week may both help the regeneration of injured spinal cord and, at the same time, be more compliant and convenient for clinical patients. Methods: In this study, thirty 7-week-old female Spraque-Dawley rats were subjected to a weight-driven impact spinal cord injury. They were divided into 3 groups and Group I and II were injected with SRGH once a week for 4 weeks; Group I were injected into the injured spinal cord area, while Group II were injected into the peritoneal cavity. Meanwhile, Group III were injected with normal saline solution. The functional outcome was evaluated using the Basso-Beattie-Bresnahan motor rating score and the inclined plane test was done 4 weeks after the first injection. Histopathological examination was performed at the same time and the amount of residual white matter was measured in all groups. Results: After 4 weeks, Groups I and II showed greater improvement than Group III(the control group) in the functional test. In the control group, invasion of atypical phagocytes, axonal degeneration, edema and cavity formation in the posterior site of spinal cord gray matter was observed in histopatholgical examination. The rate of residual white matter in Group III was less than in the other groups. Conclusion: Data showed significant functional and histopathological improvement in the groups treated with SRGH into the spinal and peritoneal cavity compared with the control group. SRGH is therefore beneficial because it helps with regeneration of the injured spinal cord and improves the compliance and convenience of patients.

The Effect of Ultrasound Irradiation on the Neural Cell Adhesion Molecules(NCAM) Expression in Rat Spinal Cord after the Sciatic Nerve Crush Injury (초음파가 흰쥐의 좌골신경 압좌손상 후 척수내 Neural Cell Adhesion Molecules의 발현에 미치는 영향)

  • Kim, Hyun-Ae;Han, Jong-Man
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.2
    • /
    • pp.41-55
    • /
    • 2007
  • Purpose: This study aimed to compare the effect on nerve regeneration of ultrasound irradiation in rats with peripheral nerve injury. Methods: To investigate alterations of the NCAM immunoreactivity in non-crushed part and crushed part of the spinal cord, the unilateral sciatic nerve of the rats were crushed. The expression of NCAM was used as the marked of peripheral nerve regeneration, and also plays an important role in developing nerve system. Experimental animals were sacrificed by perfusion fixation at post-injury 1, 3, 7, 14 days after ultrasound irradiation. The pulsed US was applied at a frequency of 1MHz and a spatial average-temporal average Intensity of 0.5W/of (20% pulse ratio) for 1 mins. The Luxol fast blue-cresyl violet stain were also done to observe the morphological changes. Results: Alteration of NCAM immunoreactivity in the crushed part and the non-crushed part of lower lumbar spinal cord were observed. NCAM-immunoreactivity cells were some increased in the dorsal horn lamina I, III and cell ventral horn at 1 day after unilateral sciatic nerve injury. However, there was not significant difference in the relationship between crushed part and non-crushed part. NCAM-inmmunoreactivity was remarkably increased at 3 days after unilateral sciatic nerve injuryin the gray matter and white matter. NCAM-immunoreactivity was increased in the ventral horn and post horn of experimental crushed part. Also, NCAM-immunoreactivity in large motor neurons in ventral horns lamina VIII, IX were increased at 7 days after unilateral sciatic nerve injury. At 14 days after sciatic nerve crushed injury, there was no significant difference. All group were decreased for 14 days. In the time course of NCAM expression, all groups showed a significant difference at 3day groups(p<0.05). Whereas, CC group was noted a significant difference between 3day and 7 day group respectively. In NCAM expression, there were significantly increased in all group. In the relationship between CNC group and ENC group, significant difference was detected among 3, 7, 14 day group(p<0.05). The difference between CC group and ENC group were noted in all groups(p<0.05). Conclusion: It is consequently suggested that the effects of the ultrasound irradiation may increase the NCAM immunoreactive neurons and glial cell in the spinal cord after unilateral sciatic nerve crushed injury. Therefore, the increased NCAM immunoreactivity in the spinal cord may reflect the neuronal damage and healing process induced by a ultrasound irradiation after peripheral nerve injury in rat.

  • PDF

Neuropathological Mechanisms of Perinatal Brain Injury (주산기 뇌손상의 신경병리적 기전)

  • Song Ju-Young;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.199-207
    • /
    • 2003
  • This review describes the neurophathological mechanisms that are implicated in perinatal brain injury. Perinatal brain injury is the most important cause of morbidity and mortality to infants, often leading to spastic motor deficits, mental retardation, seizures, and learning impairments. The immature brain injury is usually caused by cerebral hypoxia-ischemia, hemorrhage, or infection. The important form of perinatal brain injury is the hypoxic-ischemic injury and the cerebral hemorrhage. The pathology of hypoxic-ischemic injury include delayed energy failure by mitochondrial dysfunction, neuronal excitotoxicity and vulnerability of white matter in developing brain. The immature brain has the fragile vascular bed of germinal matrix and can not effectively centralize their circulation. Therefore, the cerebral hemorrhage process is considered to be involved in the periventricular leukomalacia.

  • PDF

Time to Recover Consciousness in Patients with Diffuse Axonal Injury : Assessment with Reference to Magnetic Resonance Grading

  • Park, Sung-Jun;Hur, Jin-Woo;Kwon, Ki-Young;Rhee, Jong-Joo;Lee, Jong-Won;Lee, Hyun-Koo
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.205-209
    • /
    • 2009
  • Objective : This study was conducted to investigate the correlation between the degrees of injury on brain magnetic resonance imaging (MRI) and the time interval to recovery of consciousness in patients with diffuse axonal injury. Methods : From January 2004 to December 2008, 25 patients with diffuse axonal injury were treated at our hospital. We retrospectively investigated the patients' medical records and radiological findings. We divided the patients into three groups according to the grade of MRI finding : grade I, small scattered lesions on the white matter of the cerebral hemisphere; grade II, focal lesions on the corpus callosum; and grade III, additional focal lesions on the brain stem. Result : Seven patients belonged to the grade I group; 10 to the grade II group; and 8 to the grade III group. The mean Glasgow Coma Scale (GCS) score of all patients at the time of admission was 7.28. Recovery of consciousness was observed in 23 of the 25 patients; the remaining two patients never regained consciousness. The time interval to recovery of consciousness (awake status) ranged from 1 day to 125 days (mean 22.1 days) : grade I group patients, within approximately 1 week (mean 3.7 days); grade II group patients, within approximately 2 weeks (mean 12.5 days); and grade III group patients, within approximately 2 months (mean 59.5 days). Conclusion : Our study results suggest a correlation between the mean time interval to recovery of consciousness in patients with diffuse axonal injuries and the degrees of brain injuries seen on MRI. Patients with grade I and II diffuse axonal injuries recovered consciousness within 2 weeks, while patients with grade III injuries required approximately 2 months.

Magnetic Resonance Imaging and Pathologic Correlation of Cerebral Fat Embolism using Oleic Acid

  • Park, Byung-Rae
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • To investigate the correlation between the magnetic resonance imaging (MRI) of cerebral fat embolism that is induced by injecting oleic acid into 10 cats, and a pathologic diagnosis. Using a microcatheter, 30 ${mu}ell$ of oleic acid was injected into the internal carotid artery of 10 cats. MR T2-weighted image (T2WI), diffusion-weighted image (DWI) and Gadolinium-enhanced T1-weighted image (Gd-enhanced T1WI) were obtained after 30 minutes and 2 hours of embolization. After 30 minutes of the embolization, lesions of very high signal intensity were detected by T2WI in 6 cats, and of slightly high signal intensity in 2 cats; in the remaining 2 cats, signal intensity was normal. DWI showed lesions of very high intensity in 9 cats and of slightly high intensity in one cat. According to the findings of light microscopic examination, infarcted lesions mainly involved the gray matter, but also some white matter. A magnetic resonance imaging diagnosis for cerebral fat embolism that was induced by oleic acid through the internal carotid artery in cats showed high signal intensity on the T2WI and the DWI within an initial 2 hours, and with a well enhancement on the Gd-enhanced T1WI. Considering cellular edema, cerebrovascular injury and extracellular space widening, we assumed pathologically that cytotoxic and vasogenic edema exists at the same time.

  • PDF

Perspectives : Understanding the Pathophysiology of Intraventricular Hemorrhage in Preterm Infants and Considering of the Future Direction for Treatment

  • Young Soo Park
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.3
    • /
    • pp.298-307
    • /
    • 2023
  • Remarkable advances in neonatal care have significantly improved the survival of extremely low birth weight infants in recent years. However, intraventricular hemorrhage (IVH) continues to be a major complication in preterm infants, leading to a high incidence of cerebral palsy and cognitive impairment. IVH is primarily caused by disruption of the fragile vascular network of the subependymal germinal matrix, and subsequent ventricular dilatation adversely affects the developing infant brain. Based on recent research, periventricular white matter injury is caused not only by ischemia and morphological distortion due to ventricular dilatation but also by free iron and inflammatory cytokines derived from hematoma and its lysates. The current guidelines for the treatment of posthemorrhagic hydrocephalus (PHH) in preterm infants do not provide strong recommendations, but initiating treatment intervention based on ultrasound measurement values before the appearance of clinical symptoms of PHH has been proposed. Moreover, in the past decade, therapeutic interventions that actively remove hematomas and lysates have been introduced. The era is moving beyond cerebrospinal fluid shunt toward therapeutic goals aimed at improving neurodevelopmental outcomes.

Valproic Acid Increases Expression of Neuronal Stem/Progenitor Cell in Spinal Cord Injury

  • Bang, Woo-Seok;Kim, Kyoung-Tae;Cho, Dae-Chul;Kim, Hye-Jeong;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Objective : This study investigates the effect of valproic acid (VPA) on expression of neural stem/progenitor cells (NSPCs) in a rat spinal cord injury (SCI) model. Methods : Adult male rats (n=24) were randomly and blindly allocated into three groups. Laminectomy at T9 was performed in all three groups. In group 1 (sham), only laminectomy was performed. In group 2 (SCI-VPA), the animals received a dose of 200 mg/kg of VPA. In group 3 (SCI-saline), animals received 1.0 mL of the saline vehicle solution. A modified aneurysm clip with a closing force of 30 grams was applied extradurally around the spinal cord at T9, and then rapidly released with cord compression persisting for 2 minutes. The rats were sacrificed and the spinal cord were collected one week after SCI. Immunohistochemistry (IHC) and western blotting sample were obtained from 5 mm rostral region to the lesion and prepared. We analyzed the nestin immunoreactivity from the white matter of ventral cord and the ependyma of central canal. Nestin and SOX2 were used for markers for NSPCs and analyzed by IHC and western blotting, respectively. Results : Nestin and SOX2 were expressed significantly in the SCI groups but not in the sham group. Comparing SCI groups, nestin and SOX2 expression were much stronger in SCI-VPA group than in SCI-saline group. Conclusion : Nestin and SOX2 as markers for NSPCs showed increased expression in SCI-VPA group in comparison with SCI-saline group. This result suggests VPA increases expression of spinal NSPCs in SCI.

The Role of Glial Cells in Regenerative Responses of the Injured Corticospinal Tract Axons in Rats Treated with Cindii Rhizoma (흰쥐의 척수손상 후 천궁처리에 의한 피질척수로 축삭재생 반응시 Glial cells의 역할)

  • Han, Yeong-Su;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.3
    • /
    • pp.19-39
    • /
    • 2008
  • Objectives : It has been reported that CG was effective in decreasing injury to neural tissues. To investigate neural responses in the injured spinal cord, an extract of CG was examined to determine its effect on neural responses in the injured spinal cords of rats. Methods : After CG treatment was applied to the spinal cord of rats given a contusion injury, the re-growth responses of injured neural tissues and corticospinal tract axons was observed by measuring the number of GAP-43, Cdc2, and phospho-Erk1/2 proteins, CST axons, GFAP-stained astrocytes, and Glial scarring in the injured spinal cord. Results : Levels of GAP-43, Cdc2, and phospho-Erk1/2 proteins were found to have increased in the injured spinal cord region. The number of GFAP-stained astrocytes also increased within and around the injury cavity. Glial scarring, which was identified by CSPG immunofluorescence staining, was reduced by CG treatment. Anterograde tracing by Dil dye showed that the elongation of the CST axons in the dorso-medial white matter area was almost completely prevented at the injury site. Collateral sprouting was observed in the spinal cord rostrally close to the injury site, and CG treatment further increased axonal arborization in the corresponding region. In vivo migration of CST axons and astrocytes using an implanted polymer tube system showed more of an increase in enhanced migration of axons and astrocytes in CG-treated group compared to the injury control group. Conclusions : These results suggest that CG activated neural responses - including astrocyte migration - and promotes axonal regenerative activity in the injured spinal cord area.

The literatual study on the cerebral vascular dementia in oriental and occidental medicine (뇌혈관성(뇌혈관성) 치매(痴?)에 대(對)한 동서의학적(東西醫學的) 고찰(考察))

  • Ann, Tak-Weon;Hong, Seog;Kim, Hee-Chul
    • Korean Journal of Oriental Medicine
    • /
    • v.2 no.1
    • /
    • pp.40-70
    • /
    • 1996
  • In the literatual study on the cerebral vascular dementia, the results were as follows : 1. Cerebral vascular dementia is so called apoplectic dementia, because it almost occurs after apoplexy, the attack rate has gradually increased by increase of life, so it exert a harmful influence to geriatric diseases. 2. The etiological factors are summarized on deficiency in the heart, kidney, liver(心, 腎, 肝虛), pathogenic wind(豊) pathogenic fire(火) phlegm(痰) and stagnated blood(瘀血) in the oriental medicine, and multiple cerebral infarction, cerebral anemia, decrease of cerebral vascular flow are etiological factors in the occidental medicine. 3. The region of infarction and attack of cerebral vascular dementia have a close connection, and generally the cerebral vascular dementia easily occur in injury of white matter of brain. 4. Symptoms of cerebral vascular dementia are dysphasia, walking disorder, hemiplegia, sensory paralysis, disturbance of memory, judgement, calculation, emotion incontinence, speech impediment, silence or talkative, lower thinking ability and depersonalization, and symptoms are aggravated by stage. 5. Therapeutic herb medicines are Palpungsan(八風散), Baepungsan(排風散), Jinsaanshinhwan(辰砂安神丸), Sabacksan(四白散), Kanghwalyupungsan(姜活愈風散), Woohwangchungshimhwan(牛黃淸心丸), and they are used to dispelling pathogenic wind(祛風), soothe the nerves(安神), dispel pathogenic heat from lung, nourish the blood(淸肺養血).

  • PDF