• Title/Summary/Keyword: white matter injury

Search Result 30, Processing Time 0.024 seconds

Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Vascular dementia (VaD) caused by reduced blood supply to the brain manifests as white matter lesions accompanying demyelination and glial activation. We previously showed that arabinoxylan consisting of arabinose and xylose, and arabinose itself attenuated white matter injury in a rat model of VaD. Here, we investigated whether larch arabinogalactan (LAG) consisting of arabinose and galactose could also reduce white matter injury. MATERIALS/METHODS: We used a rat model of bilateral common carotid artery occlusion (BCCAO), in which the bilateral common carotid arteries were exposed and ligated permanently with silk sutures. The rats were fed a modified AIN-93G diet supplemented with LAG (100 mg/kg/day) for 5 days before and 4 weeks after being subjected to BCCAO. Four weeks after BCCAO, the pupillary light reflex (PLR) was measured to assess functional consequences of injury in the corpus callosum (cc). Additionally, Luxol fast blue staining and immunohistochemical staining were conducted to assess white matter injury, and astrocytic and microglial activation, respectively. RESULTS: We showed that white matter injury in the the cc and optic tract (opt) was attenuated in rats fed diet supplemented with LAG. Functional consequences of injury reduction in the opt manifested as improved PLR. Overall, these findings indicate that LAG intake protects against white matter injury through inhibition of glial activation. CONCLUSIONS: The results of this study support our hypothesis that cell wall polysaccharides consisting of arabinose are effective at protecting white matter injury, regardless of their origin. Moreover, LAG has the potential for development as a functional food to prevent vascular dementia.

White matter injury following rotavirus infection in neonates: new aspects to a forgotten entity, 'fifth day fits'?

  • Yeom, Jung Sook;Park, Chan-Hoo
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.7
    • /
    • pp.285-291
    • /
    • 2016
  • That rotavirus infection can cause neurological symptoms in young children has been well established. However, it is surprising why rotavirus infection has been overlooked as a cause of neonatal seizures for many years, despite significant research interest in neonatal rotavirus infection. Neonates are the age group most vulnerable to seizures, which are typically attributed to a wide range of causes. By contrast, because rotavirus infection is usually asymptomatic, it has been difficult to identify an association between this virus and neonatal seizures. The conventional wisdom has been that, although neonates are commonly infected with rotavirus, neurological complications are rare in this age. However, recent studies using diffusion-weighted imaging (DWI) have suggested a connection between rotavirus infection and neonatal seizures and that rotavirus infection can induce diffuse white matter injury without direct invasion of the central nervous system. The clinical features of white matter injury in rotavirus-infected neonates include the onset of seizures at days 4-6 of life in apparently healthy term infants. The recent findings seem to contradict the conventional wisdom. However, white matter injury might not be a completely new aspect of rotavirus infection in neonates, considering the forgotten clinical entity of neonatal seizures, 'fifth day fits'. With increased use of DWI in neonatal seizures, we are just starting to understand connection between viral infection and white matter injury in neonates. In this review, we discuss the historical aspects of rotavirus infection and neonatal seizures. We also present the clinical features of white matter injury in neonatal rotavirus infection.

Hot Water Extract of Wheat Bran Attenuates White Matter Injury in a Rat Model of Vascular Dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.145-155
    • /
    • 2014
  • Vascular dementia is characterized by white matter lesions involving the demyelination and activation of astrocytes and microglia. In a previous study, we showed that the supernatant of a laboratory-scale, hot water extract of ground whole wheat (TALE) attenuated white matter injury and astrocytic activation in a rat model of bilateral common carotid artery occlusion (BCCAO). In the present study, we made several modifications to the hot water extraction process to remove starch and enable large-scale production. We used wheat bran (WB), which contains less starch, instead of ground whole wheat. In addition, we removed starch granules with a decanter before hot water extraction. The final product, wheat bran extract (WBE), contained 2.42% arabinose, a surrogate marker of arabinoxylan, which is an active constituent of WBE. Supplementation of the rat model of BCCAO with WBE (400 mg/kg/day) for 33 days attenuated white matter injury, which was assessed by Luxol Fast Blue staining, in the corpus callosum (cc) and optic tract (opt) regions. Attenuation of white matter injury in the opt region was accompanied by improvement of the pupillary light reflex. Immunochemical staining revealed that supplementation with WBE reduced astrocytic activation in the cc and opt regions and reduced microglial activation in the opt region. These findings indicate that supplementation with WBE is effective at attenuating white matter injury accompanied by the inhibition of astrocytic and microglial activation. Therefore, extracts from WB, a cheap by-product of wheat milling, can be developed as a nutraceutical to prevent vascular dementia, a disease for which there is no approved pharmaceutical treatment.

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.

Mild Bradykinesia Due to an Injury of Corticofugal-Tract from Secondary Motor Area in a Patient with Traumatic Brain Injury

  • Lee, Han Do;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.304-306
    • /
    • 2021
  • Objectives: We report on a patient who showed mild bradykinesia due to injury of the corticofugal tract (CFT) from the secondary motor area following direct head trauma, which was demonstrated on diffusion tensor tractography (DTT). Case summary: A 58-year-old male patient underwent conservative management for subarachnoid hemorrhages caused by direct head trauma resulting from a fall from six-meter height at the department of neurosurgery of a local hospital. His Glasgow Coma Scale score was 3. He developed mildly slow movements following the head trauma and visited the rehabilitation department of a university hospital at ten weeks after the fall. The patient exhibited mild bradykinesia during walking and arm movements with mild weakness in all four extremities (G/G-). Results: On ten-week DTT, narrowing of the right CFT from the supplementary motor area (SMA-CFT), and partial tearing of the left SMA-CFT, left CFTs from the dorsal premotor cortex (dPMC-CFT) and both corticospinal tracts (CSTs) at the subcortical white matter were observed. Conclusion: This case demonstrated abnormalities in both CSTs (partial tearing at the subcortical white matter and narrowing), both SMA-CFTs (narrowing and partial tearing) and left dPMC-CFT. We believe our findings suggest the necessity of assessment of the CFTs from the secondary motor area for patients with unexplained bradykinesia following direct head trauma.

Patterns of ischemic injury on brain images in neonatal group B Streptococcal meningitis

  • Choi, Seo Yeol;Kim, Jong-Wan;Ko, Ji Won;Lee, Young Seok;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.8
    • /
    • pp.245-252
    • /
    • 2018
  • Purpose: This study investigated patterns of ischemic injury observed in brain images from patients with neonatal group B Streptococcal (GBS) meningitis. Methods: Clinical findings and brain images from eight term or near-term newborn infants with GBS meningitis were reviewed. Results: GBS meningitis was confirmed in all 8 infants via cerebrospinal fluid (CSF) analysis, and patients tested positive for GBS in both blood and CSF cultures. Six infants (75.0%) showed early onset manifestation of the disease (<7 days); the remaining 2 (25.0%) showed late onset manifestation. In 6 infants (75%), cranial ultrasonography showed focal or diffuse echogenicity, suggesting hypoxic-ischemic injury in the basal ganglia, cerebral hemispheres, and periventricular or subcortical white matter; these findings are compatible with meningitis. Findings from magnetic resonance imaging (MRI) were compatible with bacterial meningitis, showing prominent leptomeningeal enhancement, a widening echogenic interhemisphere, and ventricular wall thickening in all infants. Restrictive ischemic lesions observed through diffusion-weighted imaging were evident in all eight infants. Patterns of ischemic injury as detected through MRI were subdivided into 3 groups: 3 infants (37.5%) predominantly showed multiple punctuate lesions in the basal ganglia, 2 infants (25.0%) showed focal or diffuse cerebral infarcts, and 3 infants (37.5%) predominantly showed focal subcortical or periventricular white matter lesions. Four infants (50%) showed significant developmental delay or cerebral palsy. Conclusion: Certain patterns of ischemic injury are commonly recognized in brain images from patients with neonatal GBS meningitis, and this ischemic complication may modify disease processes and contribute to poor neurologic outcomes.

The Correlation of MRI Findings to Outcome in Diffuse Axonal Injury Patients (미만성 뇌축삭손상 환자의 자기공명영상 소견과 예후와의 상관관계)

  • Oh, Kyung Seup;Ha, Sung Il;Suh, Bumn Suk;Lee, Hyun Sung;Lee, Jong Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.20-24
    • /
    • 2001
  • Object : We intended to investigate the relationship between the degree of injury on MRI and the outcome of the patients with diffuse axonal inury. Method : From january, 1995 to march, 1999, 22 patients were supposed to have diffuse axonal injuries by means of their neurologic signs and MRI. We investigated their prognosis according to CT, MRI and initial neurologic findings. Result : 1) The lesions were mainly located at white matter of cerebrum, corpus callosum, brainstem, and basal ganglia. 2) The lesions of white matter were most commonly in the frontal lobe and temporal lobe. 3) The majority of corpus callosal lesions were located in the posterior body and splenium, but anterior corpus callosal lesions combined with posterior lesions were not found. 4) Brainstem lesions, all non-hemorrhagic, were mostly located in the dorsolateral aspect, not be found on CT. 5) The brainstem lesions were found in 10 cases among total 22 cases, and corpus callosal lesions were accompanied with 8 cases of brainstem lesions. 6) The patients with brainstem lesions had worse prognosis. Conclusion : It is important and reasonable to take brain MRI to identify the brainstem lesions in any cases of suspicious diffuse axonal injury, and we should remind that the diffuse axonal injury with stem lesion has worse prognosis.

  • PDF

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.

Injury of Corticostriatal Tract between the Striatum and the Premotor Area in a Patient with Traumatic Brain Injury

  • Kwon, Jung-Won;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.391-393
    • /
    • 2020
  • Objectives: We investigated injury of corticostriatal (CStr) tract in patient with mild traumatic brain injury (mTBI), which was demonstrated by DTT. Method: A 44-year-old female with no previous history of neurological, physical, or psychiatric illness had suffered from head trauma resulting from a pedestrian car accident. She complained that could not quickly move the left hand with her intension. After three month's administration, her slowness movement of left hand recovered rapidly to the point that she was able to extend all fingers quickly. Results: On DTT configuration, the integrity of the left CStr tract was well-preserved, however the right CStr tract showed narrowing and partial tearing in the subcortical white matter on a DTT at 25 months after onset. Conclusion: Injury of the right CStr tract was demonstrated in a patient who developed mild motor control problems following mild TBI. We believe that the evaluation of the CStr tract from the secondary motor area for patients who showed unexplained motor control problem is necessary.

Effect of Tetramethylpyrazine on Neuronal Apoptosis in Spinal Cord Compression Injury of Rats (Tetramethylpyrazine이 흰쥐 척수압박손상의 신경세포 자연사에 미치는 영향)

  • Jo, Jong-Jin;Kim, Seung-Hwan;Lee, Joon-Seok;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : The pathophysiology of acute spinal cord injury(SCI) may be divided into primary and secondary mechanisms of injury. The secondary mechanism involves free radical formation, excitotoxicity, inflammation and apoptotic cell death, and sets in minutes after injury and lasts for weeks or months. During this phase the spinal tissue damages are aggravated. Therefore, secondary mechanisms of injury serve as a target for the development of neuroprotective drug against SCI. The present study investigated the effect of tetramethylpyrazine(TMP), an active ingredient purified from the rhizome of Ligusticum wallichii(川芎, chuanxiong), on neuronal apoptosis in spinal cord compression injury in rats. Methods : SCI was subjected to rats by a static compression method(35 g weight, 5 mins) and TMP was treated 3 times(30 mg/kg, i.p.) during 48 hours after the SCI. Results : TMP ameliorated the tissue damage in peri-lesion of SCI and reduced TUNEL-labeled cells both in gray matter and in white matter significantly. TMP also attenuated Bax-expressed motor neurons in the ventral horn and preserved Bcl-2-expressed motor neurons. Conclusions : These results indicate that TMP plays a protective role in apoptotic cell death of neurons and oligodendrocytes in spinal cord injury. Moreover, it is suggested that TMP and TMP-containing chuanxiong may potentially delay or protect the secondary spinal injury.