• Title/Summary/Keyword: white light

Search Result 1,636, Processing Time 0.034 seconds

Improved Performance of White Phosphorescent Organic Light-Emitting Diodes through a Mixed-Host Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.642-646
    • /
    • 2009
  • Highly efficient white phosphorescent organic light-emitting diodes with a mixed-host structure are developed and the device characteristics are studied. The introduction of a hole-transport-type host (N, N'-dicarbazolyl-3-3-benzen (mCP)) into an electron-transport-type host (m-bis-(triphenylsilyl)benzene (UGH3)) as a mixed-host emissive layer effectively achieves higher current density and lower driving voltage. The peak external quantum and power efficiency with the mixed-host structure improve up to 18.9% and 40.9 lm/W, respectively. Moreover, this mixed-host structure device shows over 30% enhanced performance compared with a single-host structure device at a luminance of 10,000 $cd/m^2$ without any change in the electroluminescence spectra.

Luminescence Properties of $Y_2SiO_5:Eu^{3+}$ as Red-Emitting Phosphor for White Light Emitting Diodes

  • Song, Y.H.;Park, W.J.;Yoon, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1303-1304
    • /
    • 2009
  • In order to apply to the White light emitting diodes (WLEDs), The $Y_2SiO_5:Eu^{3+}$ as red phosphor was synthesized by solid state reaction method. The highest emission of $Y_2SiO_5:Eu^{3+}$ was shown when the $Eu^{3+}$ concentration was 0.02. A single phase was observed from X-ray diffraction (XRD) analysis of synthesized samples and secondary phase wasn't found.

  • PDF

Emission Properties of White Light Emission Organic Electroluminescent Device using Exciplex Emission (Exciplex를 이용한 백색 유기 전계발광소자의 발광특성)

  • 김주승;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.762-767
    • /
    • 2001
  • We report the white light emission from the multilayer organic electroluminescent(EL) device using exciplex emission. The exciplex at 500nm originated between poly(N-vinylcarvazole)(PVK) and 2,5-bis(5'-tert-butyl-2-benzoxazoly)thiophene(BBOT) and exciplex of 50nm originated from N,N'-diphenyl-N,N'-(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) and BBOT were observed. Also, the energy transfer from PVK to BBOT and poly(3-hexylthiophene)(P3HT) in mixed emitting materials was occurred. The electroluminescence(EL) spectra of organic EL device which have a device structure of ITO/CuPc(5nm)/emitting layer(100nm)/BBOT(30nm)/LiF(1.4nm)/Al(200nm) were slightly changed as a function of the applied voltage. The luminance fo 12.3 ${\mu}$W/$\textrm{cm}^2$ was achieved at 20V and EL spectrum measured at 20V corresponds to Commission Internationale de L\`Eclairage(CIE) coordinates of x=0.29 and y=0.353.

  • PDF

Oxide Thickness Measurement of CMP Test Wafer by Dispersive White-light Interferometry (분산형 백색광 간섭계를 이용한 CMP 테스트 웨이퍼의 $SiO_2$ 두께 측정)

  • Park, Boum-Young;Kim, Young-Jin;Jeong, Hae-Do;Ghim, Young-Sik;You, Joon-Ho;Kim, Seung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.86-87
    • /
    • 2007
  • The dispersive method of white-light interferometry is proper for in-line 3-D inspection of dielectric thin-film thickness to be used in the semiconductor and flat-panel display industry. This research is the measurement application of CMP patterned wafer. The results describe 3-D and 2-D profile of the step height during polishing time.

  • PDF

Development of a Biosensor Reader System for the Residual Pesticides using White Light Source and Color-Sensor (백색 광원과 컬러 센서를 이용한 잔류 농약 검출용 바이오 센서 측정기 개발)

  • Cho, Hyoung-Jun;Yu, Young-Hun;Hyun, Hea-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.433-439
    • /
    • 2005
  • We have developed a biosensor reading system using a white light source and a color-sensor. To reduce the environmental effect, we used the ratio of specific color intensity to the entire white light intensity. Also we could improve the responsibility of the system by controlling the amplification of the color sensor output.

The Characteristic Analysis of White Organic Light Emitting Diodes with Two-wavelength Materials at Emitting Layer (발광층에 2파장 재료를 갖는 백색 유기발광소자의 특성분석)

  • Kang, Myung-Koo;Shim, Ju-Yong;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, the white organic LED with two-wavelength was fabricated using the NPB of blue emitting material and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The structure of white OLED was ITO/NPB$(200{\AA})$NPB:Rubrene$(300{\AA})$/BCP$(100{\AA})/Alq_3(100{\AA})/Al(1000{\AA})$ and the doping concentration of Rubrene was 0.75 wt%. We obtained the white OLED with CIE color coordinates were x=0.3327 and y=0.3387, and the maximum EL wavelength of the fabricated white organic light-emitting device was 560 nm at applied voltage of 11 V, which was similar to NTSC white color with CIE color coordinates of x=0.3333 and y=0.3333. The turn-on voltage is 1 V, the light-emitting him-on voltage is 4 V. We were able to obtain an excellent maximum external quantum efficiency of 0.457 % at an applied voltage of 18.5 V and current density of $369mA/cm^2$.

Analysis of the Characteristics of a White OLED using the Newly Synthesized Blue Emitting Material nitro-DPVT by Varying the Doping Concentrations of Fluorescent Dye and the Thickness of the NPB Layer (신규 합성한 청색발광재료 nitro-DPVT를 사용한 백색 유기발광다이오드의 형광색소 도핑농도 및 NPB 층의 두께 변화에 따른 특성 분석)

  • Jeon, Hyeon-Sung;Cho, Jae-Young;Oh, Hwan-Sool;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.379-385
    • /
    • 2006
  • A stacked white organic light-emitting diode (OLED) having a blue/orange emitting layer was fabricated by synthesizing nitro-DPVT, a new derivative of the blue-emitting material DPVBi on the market. The white-emission of the two-wavelength type was successfully obtained by using both nitro-DPVT for blue~emitting material, orange emission as a host material and Rubrene for orange emission as a guest material. The basic structure of the fabricated white OLED is glass/ITO/NPB$(200{\AA})$/nitro-DPVT$(100{\AA})$/nitro-DPVT:$Rubrene(100{\AA})/BCP(70{\AA})/Alq_3(150{\AA})/Al(600{\AA})$. To evaluate the. characteristics of the devices, firstly, we varied the doping concentrations of fluorescent dye Rubrene from 0.5 % to 0.8 % to 1.3 % to 1.5 % to 3.0 % by weight. A nearly pure white-emission was obtained in CIE coordinates of (0.3259, 0.3395) when the doping concentration of Rubrene was 1.3 % at an applied voltage of 18 V. Secondly, we varied the thickness of the NPB layer from $150{\AA}\;to\;200{\AA}\;to\;250{\AA}\;to\;300{\AA}$ by fixing doping with of Rubrene at 1.3 %. A nearly pure white-emission was also obtained in CIE coordinates of (0.3304, 0.3473) when the NPB layer was $250-{\AA}$ thick at an applied voltage of 16 V. The two devices started to operate at 4 V and to emit light at 4.5 V. The external quantum efficiency was above 0.4 % when almost all of the current was injected.

The Size Effect and Its Optical Simulation of Y3Al5O12:Ce3+ Phosphors for White LED (백색 LED용 Y3Al5O12:Ce3+ 형광체 크기 효과 및 광 시뮬레이션)

  • Lee, Sung Hoon;Kang, Tae Wook;Kim, Jong Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2019
  • In this study, we synthesized two $Y_3Al_5O_{12}:Ce^{3+}$ phosphors ($7{\mu}m$-sized and $2{\mu}m$-sized YAG) with different sizes by controlling particles sizes of starting materials of the phosphors for white LED. In the smaller one ($2{\mu}m$-sized YAG), its photoluminescence intensity in the reflective mode was 63 % that of the bigger one ($7{\mu}m$-sized YAG); the quantum efficiencies were 93 % and 70 % for the smaller and the bigger ones. Two kinds of white LED packages with the same color coordinates were fabricated with a blue package (chip size $53{\times}30$) and two phosphors. The luminous flux of the white LED package with the smaller YAG phosphor was 92 % of that with the bigger one, indicating that the quantum efficiency of phosphor dispersed inside LED package was higher than that of the pure powder. It was consistently confirmed by the optical simulation (LightTools 6.3). It is notable according to the optical simulation that the white LED with the smaller phosphor showed 24 % higher luminous efficiency. If the smaller one had the same quantum efficiency as the bigger one (~93 %). Therefore, it can be suggested that the higher luminous efficiency of white LED can be possible by reducing the particle size of the phosphor along with maintaining its similar quantum efficiency.

Characteristics of Spectral Irradiance Based on the Distance from the Light Source and Operating Method for Fishing Lamps with a Combined Light Source (이종(異種) 광원 조합에 의한 복수 광원의 분광 방사특성과 광달(光達) 거리 및 집어등 운용방법)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.711-720
    • /
    • 2009
  • Characteristics of spectral irradiance based on the distance from the light source, which combined metal halide lamp and high-luminance light-emitting diode (LED) light, were studied to investigate a suitable operating method for fishing lamps of the next generation. A 380-780 nm wavelength radiation was superior when using 1 W electrical power in the order of metal halide lamp, blue LED, white LED, and combined LED lights. The wavelengths at which the irradiance was at a maximum were fixed to 581 nm for the light source, which was combined for each ratio. If the irradiance characteristics at 300-1100 nm wavelengths were set as 100%, the irradiance rates at 400-599 nm were 100%, 72.7%, 88.9%, and 69.5% for the blue, white, combined LED lights, and metal halide lamp, respectively. This indicated that the color rendering of the LED lights was dependent on the metal halide lamp light source. When the horizontal profiles (450-550 nm wavelength) of irradiances were compared to a different type of light source in the ratio white LED: combined LED lights: blue LED: metal halide lamp, the irradiated area of more than $0.01\;{\mu}mol/s/m^2/nm$ was in the ratio 1.0 : 1.3 : 1.7 : 37.3, respectively. Based on the radiation characteristics and irradiance according to the distance from the light source, LED lights have an estimated economic efficiency if used before and after operation of a metal halide lamp.