• Title/Summary/Keyword: white dwarf

Search Result 74, Processing Time 0.025 seconds

Period changes in the Intermediate Polar MU Camelopardalis

  • Park, Jiwon;Yoon, Jho-Na;Kim, Yonggi;Andronov, I.L.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2015
  • Period changes found in the 10 years CCD BVR photometry data (2005 - 2014) of the Intermediate Polar MU Cam will be discussed. The timings of extrema of the data are determined and the new ephemeris for the spin period and orbital period have been calculated by using multi-periodic approximation as follows: BJD(orb)=2454085.46(19)+0.19664 $10(26){\cdot}E$ and BJD(spin)=2454085.50725(91)+0.013740942(13) ${\cdot}$ $E-1.51(10){\times}10^{-12}{\cdot}E^2$. The O-C diagram shows an increasing of the spin period as $P=-2.20(14){\cdot}10^{-12}s/s$. It is also found in MU Cam that the white dwarf's rotation seems to be switched from a state of spin-down to spin-up by the white dwarf's equilibrium spin period in 2005.

  • PDF

LINE EMISSION FROM THE MAGNETOSPHERE OF MAGNETIC CATACLYSMIC VARIABLES (MCV 자기구에서의 선방출)

  • KIM YONGGI
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.113-118
    • /
    • 2000
  • A magnetic cataclysmic variable has a rotating magnetic white dwarf which accretes matter from its late type companion. Kim & Beuermann (1995) presented a phenomenological model of the accretion from its surrounding structure e.g., a disk into the magnetosphere of the white dwarf, and presented results for the spin modulated X-ray spectrum and light curves. Using this model, we calculate the optical continuum and line emission which result from reprocessing of X-rays in the accretion stream within the magnetosphere. Penning (1985) suggested the observed spin-modulated radial-velocity variations might result from reprocession of X-rays in the disk. We, however, find the radiation can be originated from the magnetosphere accretion stream. We use the same geometrical model to calculate the optical and the X-ray behaviour. The results from the two wavelength bands are internally consistent. We conclude that this approach will increase the diagnostic accuracies of the results.

  • PDF

Accretion Flow and Disparate Profiles of Raman Scattered O $VI{\lambda}{\lambda}1032$ and 1038 in the Symbiotic Star V1016 Cygni

  • Heo, Jeong-Eun;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.88.2-88.2
    • /
    • 2014
  • The symbiotic star V1016 Cygni shows the Raman scattered O VI features at $6825{\AA}$ and $7088{\AA}$. These are formed through inelastic scattering of O VI 1032, 1038 by atomic hydrogen. They exhibit characteristic double peak profiles with a stronger red peak, which is explained by the accretion flow around the white dwarf. In addition, the two Raman features have different profiles in such a way that the blue part of the Raman 7088 feature is relatively more suppressed than the Raman 6825 counterpart. We produced the Doppler maps of the two Raman features in order to trace the origin of the disparate profiles. We conclude that the profile difference is due to various O VI 1032 to O VI 1038 flux ratios in the accretion region. This is consistent with the picture where the slow stellar wind from the giant interacts with the accretion flow around the white dwarf.

  • PDF

A Hydrodynamic Study of Stellar Wind Accretion in S-type Symbiotic Stars

  • Lee, Young-Min;Kim, Hyosun;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2019
  • Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant, exhibiting various activities mainly attributed to accretion of a fraction of slow stellar wind emanating from the giant. We perform 3 dimensional hydrodynamical simulations using the FLASH code to investigate the formation and physical structures of an accretion disk in symbiotic stars with binary separation in the range of 2-4 au. Radiative cooling is introduced in the flow in order to avoid acute pressure increase in the vicinity of the accretor that may prevent stable disk formation. By setting the same density condition in front of the bow shock generated in two different velocity fields, the role of ram pressure balancing between the disk and the wind is examined. We find that three main streams (direct stream from the giant, stream following the accretion wake, and stream passing through the bow shock front) all feed the disk, and their individual contributions on the mass accretion onto the white dwarf are explored.

  • PDF

THE MASS OF PROGENITORS OF WHITE DWARFTS IN OPEN CLUSTERS

  • LEE SEE-WOO;SUNG HWANKYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.53-62
    • /
    • 1996
  • 31 white dwarfs in 10 open clusters are examined, and their maximum mass and the upper mass limit of their progenitors are obtained as $1.22\pm0.02M_{\bigodot}\;and\;7.2\pm0.4M_{\bigodot}$ respectively, suggesting that the upper mass limit of white dwarfs is less than 8M_{\bigodot}$ The final mass of white dwarfs shows no clear correlation with the initial mass of their progenitors, and it is found that a deficient gap of initial mass exists between $\~4\;and\;~5.2M_{\bigodot}$. This gap seems to correspond to the mass range for carbon detonation or deflagration. The total expected numbers of white dwarfs are $11\~22$ in Hyades with 7 known white dwarfs and 17 in Praesepe with 8 known white dwarfs. These known white dwrfs are all younger than the others in both clusters. But one known white dwarf in Pleiades is older one among $2\~3$ expected white dwarfs.

  • PDF

Time-dependent variations of accretion disk (Accretion disk의 시간에 따른 변화)

  • 나혜원;김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.11-23
    • /
    • 1987
  • In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the $\alpha$ parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the step increase of source term. With these assumptions we solve the basic equations of stellar structure using New-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of $\alpha$, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of $\alpha$is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk. These show the temperature and pressure of disk are similar to those of normal stars but the density of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the $\alpha$ value instead of increment of mass flow from the secondary star.

  • PDF

RAMAN SPECTROSCOPY IN SYMBIOTIC STARS (공생별에서 라만 산란선의 형성)

  • LEE HEE-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.103-112
    • /
    • 2000
  • Symbiotic stars are known as binary systems of a giant with heavy mass loss and a white dwarf accompanied by an emission nebula. They often show bipolar nebulae, and are believed to form an accretion disk around the white dwarf component by attracting the slow but heavy stellar wind around the giant companion. However, the existence and physical properties of the accretion disk in these systems still remain controversial. Unique to the spectra of symbiotic stars is the existence of the symbiotic bands around $6830{\AA}$ and $7088{\AA}$, which have been identified by Schmid (1989) as the Raman scattered features of the O VI $1032{\AA}$ and $1038{\AA}$ doublet by atomic hydrogen. Due to the incoherency of the Raman scattering, these features have very broad profiles and they are also strongly polarized. In the accretion disk emission model, it is expected that the Raman features are polarized perpendicular to the binary axis and show multiple peak structures in the profile, because the neutral scatterers located near the giant component views the accretion disk in the edge-on direction. Assuming the presence of scattering regions outflowing in the polar directions, we may explain the additional red wing or red peak structure, which is polarized parallel to the binary axis. We argue that in the accretion disk emission model it is predicted that the profile of the Raman feature around $6830{\AA}$ is different from the profile of the $7088{\AA}$ because the O VI line optical depth varies locally around the white dwarf component. We conclude that the Raman scattered features are an important tool to investigate the physical conditions and geometrical configuration of the accretion disk in a symbiotic star.

  • PDF

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF

Occurrence and Detection of Rice black-streaked dwarf virus in Korea

  • Lee, Bong-Choon;Hong, Yeon-Kyu;Hong, Sung-Jun;Park, Sung-Tae;Lee, Key-Woon
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.172-173
    • /
    • 2005
  • Until now, occurrence of Rice black-streaked dwarf virus (RBSDV) is observed in Gyeongsang provinces, southeastern part of Korea. However, recently, the occurrence of RBSDV is increasing and spreading in Jeonra provinces including Gochang-gun, southwestern part of Korea. RBSDV infected plants showed typical symptoms including stunted, deformed leaves with white waxy or black-streaked swelling along the veins. We extracted viral genomic dsRNA from infected leaves and analyzed dsRNA pattern by polyacrylamide gel electrophoresis. Ten genomic segments with similar sized dsRNAs were observed. We also detected RBSDV by reverse transcription (RT)-PCR using specific primers for S10 from genomic dsRNA and observed amplified DNA fragment specific for RBSDV S10.

THE FE Kα EMISSION LINE OF INTERMEDIATE POLAR V1223 SAGITTARII

  • Nwaffiah, J.U.;Eze, R.N.C.
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.147-152
    • /
    • 2014
  • We present measurements of the Fe $K{\alpha}$ emission line of the intermediate polar V1223 Sagittarii observed with the Suzaku satellite. The spectrum is modeled with an absorbed thermal bremsstrahlung spectrum and three Gaussians for the three components of the Fe $K{\alpha}$ lines. We resolve the neutral or low-ionized (6.41keV), He-like (6.70keV), and H-like (7.00keV) iron lines. We also obtain a thermal continuum temperature of 25 keV, which supports a thermal origin of the hard X-rays observed from the shock heated layers of gas between the white dwarf and the shock front. Hence, we believe that the He-like and H-like lines are from the collisional plasma. On the origin of the Fe $K{\alpha}$ fluorescence line, we find that it could be partly from reflections of hard X-rays from the white dwarf surface and the $N_H$ absorption columns. We also discuss the Fe $K{\alpha}$ emission line as veritable tool for the probe of some astrophysical sites.