• Title/Summary/Keyword: whirl response

Search Result 34, Processing Time 0.018 seconds

Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves (홈이 회전하는 빗살무의 저널 베어링의 안정성 해석)

  • 윤진욱;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.166-174
    • /
    • 2002
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

  • PDF

Effects of Design Conditions in Five Pad Tilting Pad Bearing on the Lateral Vibration Characteristics of Small Gas Turbine (5패드 틸팅 패드 베어링의 설계 조건 변화가 소형 가스터빈의 횡진동 특성에 미치는 영향)

  • Ha, Jin-Woong;Myung, Ji-Ho;Suk, Jhin-Ik;Lee, An-Sung;Kim, Young-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.752-760
    • /
    • 2011
  • In tilting pad bearing design process, the selection of the proper configuration type of either a load-between-pad(LBP) or load-on-pad(LOP) as well as preload and pivot offset conditions is to be carefully considered. Also the bearing needs to be designed in order to be suited for the rotor-bearing system and operating condition. In this paper, it is observed that the dynamic characteristics in a five pad tilting pad bearing for the LBP and the LOP configurations are influenced by the variation of preload and pivot offset. In this context, rotor dynamic analysis of the 5 MW industrial gas turbine supported by the tilting pad bearing at the front and roller bearing at the rear is carried out based on the dynamic coefficients of the tilting pad bearing investigated. The result shows that two rigid body critical modes experience various changes according to the influence of the tilting pad bearing uniquely applied to one side of this machine. Mainly, the second critical speed, the rigid body mode of conical shape with high whirling in the tilting pad bearing, is significantly changed by preload and pivot offset regardless of the LBP and LOP configurations. And, the first critical mode, the rigid body mode of conical shape with high whirling in the roller bearing, is sensitively affected by preload applied to the LOP configuration and by its asymmetric dynamic properties.

Effects of Design Conditions in Five Pad Tilting Pad Bearing on the Lateral Vibration Characteristics of Small Gas Turbine (5패드 틸팅 패드 베어링의 설계 조건 변화가 소형 가스터빈의 횡진동 특성에 미치는 영향)

  • Ha, Jin-Woong;Myung, Ji-Ho;Suk, Jhin-Ik;Lee, An-Sung;Kim, Young-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.425-432
    • /
    • 2011
  • In tilting pad bearing design process, the selection of the proper configuration type of either a Load-Between-Pad (LBP) or Load-On-Pad (LOP) as well as preload and pivot offset conditions is to be carefully considered. Also the bearing needs to be designed in order to be suited for the rotor-bearing system and operating condition. In this paper, it is observed that the dynamic characteristics in a 5 pad tilting pad bearing for the LBP and the LOP configurations are influenced by the variation of preload and pivot offset. In this context, rotor dynamic analysis of the 5MW industrial gas turbine supported by the tilting pad bearing at the front and roller bearing at the rear is carried out based on the dynamic coefficients of the tilting pad bearing investigated. The result shows that two rigid body critical modes experience various changes according to the influence of the tilting pad bearing uniquely applied to one side of this machine. Mainly, the second critical speed, the rigid body mode of conical shape with high whirling in the tilting pad bearing, is significantly changed by preload and pivot offset regardless of the LBP and LOP configurations. And, the first critical mode, the rigid body mode of conical shape with high whirling in the roller bearing, is sensitively affected by preload applied to the LOP configuration and by the its asymmetric dynamic properties.

  • PDF

Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor (터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향)

  • Lee, In-Beom;Hong, Seong-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.