• 제목/요약/키워드: wheel-leg

검색결과 21건 처리시간 0.031초

스테레오 영상처리를 이용한 바퀴달린 6족 로봇의 형태변형 알고리즘 구현 (Implementation of Transformation Algorithm for a Leg-wheel Hexapod Robot Using Stereo Vision)

  • 이상훈;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.202-204
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a Transformation algorithm of an Leg-wheel Hexapod Robot is proposed. Robot designed as can have advantages that do transfer possibility fast mobility in flat topography and uneven topography through walk that use wheel drive. In the proposed system, using the disparity data obtained from the left and right images captured by the stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Robot uses construed environmental data and transformation algorithm, decide wheel drive and leg waik, and can calculate width of street and regulate width of robot.

  • PDF

Theo Janson Mechanism 을 이용한 보행 로봇 설계 (Designing walking robot using Theo Jansen Mechanism)

  • 이병철
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.411-416
    • /
    • 2016
  • Existing moving robots has several kinds of moving method; using wheel, jointed leg structure and so on. Wheel type can be operated by DC motor so it is simple and efficient. However, it is not appropriate to pass irregular terrain and obstacle. Leg structure type has an advantage in those cases. Generally, Leg structure is operated by several servo motors attached to each joint. It makes a robot heavier and more complicate due to increase of the degree of freedom. However, by using Theo Jansen Mechanism, one (or more) leg have only single-degree of freedom and can be operated by only one DC motor. So leg structure using Theo Jansen Mechanism will be good choice if robots have to be mass-produced. This paper describes the following a walking robot designed and produced based on Theo Jansen Mechanism, simulating process of Theo Jansen leg structure using Edison m.Sketch and how to solve several of discovered problem of the robot.

  • PDF

Biologically inspired modular neural control for a leg-wheel hybrid robot

  • Manoonpong, Poramate;Worgotter, Florentin;Laksanacharoen, Pudit
    • Advances in robotics research
    • /
    • 제1권1호
    • /
    • pp.101-126
    • /
    • 2014
  • In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions are achieved by a phase switching network (PSN) module. The combination of these modules generates various locomotion patterns and a reactive obstacle avoidance behavior. The behavior is driven by sensor inputs, to which additional neural preprocessing networks are applied. The complete neural circuitry is developed and tested using a physics simulation environment. This study verifies that the neural modules can serve a general purpose regardless of the robot's specific embodiment. We also believe that our neural modules can be important components for locomotion generation in other complex robotic systems or they can serve as useful modules for other module-based neural control applications.

Predictive Motion Control Method for Continuous Locomotion of Leg-Wheel Robot

  • Masatoshi Kumagai;Takayuki Takahashi;Wang, Zhi-Dong;Michihiko Shoji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.147.5-147
    • /
    • 2001
  • This paper describes a gait algorithm and a velocity limitation method for a Leg-Wheel Robot. The gait algorithm enables the robot to preserve continuous locomotion even if the velocity command varies extensively. The velocity limitation method restricts the commanded velocity when it exceeds the mechanical limitation of the robot. Combined use of the velocity limitation method with the gait algorithm ensures the continuity of locomotion, and makes the gait pattern efficient with a long step length and low frequency of leg phase change. These methods can be applied to locomotion on unexplored rough terrain even if the range of roughness is unknown.

  • PDF

가변 휠 메커니즘을 가지는 필드 주행 로봇 설계 (Design of Field-Driving Robot with Variable Wheel Mechanism)

  • 이준성;김영석;김건중;유기호
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.186-190
    • /
    • 2019
  • When problems occurred in the unstable and/or extreme terrain environment, formal field-driving robots were unable to provide any other options such as the transformation of the wheel and body structure, and so on. For such reason, this paper proposed a novel type of integrated wheel mechanism that can be operated as a conventional driving wheel mode and hybrid wheel-leg mode in order to be negotiated in an unstable terrain environment. The mechanical effect of the proposed variable wheel mechanism was analyzed considering the geometric constraint and power requirement of the actuator for the transformation. In addition, we designed and manufactured the prototype of field-driving robot, which reliably control the variable wheel shape. Finally, the effectiveness of the variable wheel mechanism was verified by preliminary experimental approach.

험지 주행용 소형 로봇을 위한 바퀴의 설계 (A New Wheel Design for Miniaturized Terrain Adaptive Robot)

  • 김유석;김한;정광필;김성한;조규진;주종남
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.32-38
    • /
    • 2013
  • Small mobile robots which use round wheels are suitable for driving on a flat surface, but it cannot climb the obstacle whose height is greater than the radius of wheels. As an alternative, legged-wheels have been proposed by many researchers due to its better climbing performance. However, driving and climbing performances have a trade-off relationship so that their driving performance should be sacrificed. In this study, in order to achieve both driving and climbing performances, a new transformable wheel was developed. The developed transformable wheel can have a round shape on a flat surface and change its shape into legged-wheel when it makes a contact with an obstacle. For design of the transformable wheel, the performance of legged-wheel was analyzed with respect to the number and curvature of the leg, and then the new transformable wheel was designed based on the analysis. Contrary to the existing transformable wheels that contain additional actuators for the transformation, the developed transformable wheel can be unfolded without any additional actuator. In this study, in order to validate the transformable wheel, a simple robot platform was fabricated. Consequently, it climbed the obstacle whose height is 2.6 times greater than the wheel radius.

2족 보행 로봇 설계 및 구현 (Design and implementation of biped working robot)

  • 김명진;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.522-525
    • /
    • 2007
  • 기존의 로봇과 2족 로봇의 가장 큰 차이점은 이동시 바퀴를 사용하지 않고 두 다리를 사용한다는 것이다. 상식적으로 생각해 보면 이동성과 안정성 면에서 바퀴는 다리보다 훨씬 효율적이다. 그럼에도 불구하고 2족 로봇은 수많은 역할을 해낼 수 있다. 그러나 두 다리로 중심을 잡고 안정적으로 걷는다는 것은 쉬운일이 아니다. 그래서 본 논문에서 2족 로봇의 보행을 위한 기술적 요소를 중심으로 시스템을 설계하고 구현에 대해 논의하고자 한다.

  • PDF

바퀴/4 족 동작 전환으로 계단 및 문턱 오르기가 가능한 서비스 하이브리드 이동 로봇 개발 (Development of a Service Hybrid Mobile Robot for Climbing Stairs and Thresholds by Switching Wheel and Leg Gait)

  • 김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1082-1091
    • /
    • 2007
  • In this paper, we developed a new hybrid mobile robot which can climb stairs and go over thresholds by crawl gait with embedded real-time control software. This robot is also categorized into hybrid robot that has advantages of wheeled mobile robot and legged mobile robot, but adopts gait feature of crocodile named belly crawl. We imitated the belly crawl using four legs of 2 DOF, four omni-directional wheels, and embedded control software which controls legs and wheels. This software is developed using RTAI/Linux, real-time drivers. As a result, the new hybrid mobile robot has crawl gait. Using this feature, the new hybrid mobile robot can climb stairs and go over thresholds just by path planning of each leg with size of stairs and thresholds, and computing the movement distance of robot body center without considering stability. The performance of our new hybrid mobile robot is verified via experiments.