• Title/Summary/Keyword: wheel material

Search Result 316, Processing Time 0.025 seconds

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

Performance Evaluation of the High Durability Asphalt Mixture for Bridge Deck Pavements (고내구성 교면포장 아스팔트 혼합물의 공용성 평가에 관한 연구)

  • Park, Hee-Mun;Choi, Ji-Young;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.51-62
    • /
    • 2007
  • Recently, the pavement distresses in the bridge deck have seriously affected the durability of bridge deck and driver's safety. The existing asphalt materials have the limitations in reducing the pavement distresses of brides deck. To protect the bridge deck and withstand the high deflection, it is necessary to develop the asphalt materials with good fatigue resistance for bridge deck pavement. The asphalt binder combined with SBS and two other admixtures has been developed for improving the resistance to fatigue cracking, productivity, and workability for bridge deck pavement. Based on the various binder test results, the developed binder is found to be PG 70-34 indicating very higher resistance against fatigue cracking. Fatigue testing, wheel tracking testing, and moisture susceptibility testing have been conducted to evaluate the performance of asphalt mixtures developed in this study. Laboratory test results show that the developed asphalt material has three times higher fatigue lives than the typical modified asphalt mixture. Full scale accelerated testing was also performed on the typical asphalt mixture and newly developed asphalt mixture to evaluate the full scale performance of asphalt mixtures. Test results indicate that the length of cracking on the new materials is only 38% of the typical material at the 250,000 load repetitions.

  • PDF

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Study on Manufacturing Techniques and Conservation for Earthenware Horn Cups with a Horse Head Decoration(Treasure) (보물 도기 말머리장식 뿔잔의 제작 기법 연구와 보존처리)

  • KWON, Ohyoung;HAM, Chulhee;YU, Jia;KIM, Hanseul;PARK, Changyuel
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • Earthenware horn cups with horse head decorations were excavated from Tomb No. 7 of Bokcheon-dong, Dongraegu, Busan Metropolitan City. Made of earth in the shape of a horn, these cups are considered to have been used to drink alcohol or beverage. Large numbers of earthenware horn cups of various shapes were excavated from tombs located in the old territories of Silla and Gaya. A pair of earthenware horn cups were excavated from Tomb No. 7, and the two cups are almost identical in overall shapes and manufacturing techniques despite different sizes. Conservation treatment was carried out for the bigger one of the two horn cups this time. There are two cracks toward the horse head decorations around the mouth with missing parts observed. The chest of the horse touches the ground with one side decorating the horse head and the other side facing the conical mouth of the horn cup. It is in the U shape, striking a balance based on two legs attached behind. The surface of the horn cup was made with a potter's wheel, and the connection to the horse head has traces of cutting and trimming. The horse head is expressed realistically with its features including the ears, eyes, nose, and mouth well apprehended and its color is grey This study intended to investigate manufacturing techniques of the artifact by examining its internal structure through the condition survey in a non-destructive way. CT imaging was used to figure out its manufacturing techniques and to diagnose its condition, and accordingly the scientific conservation treatment was conducted to stabilize the artifact. The precise diagnosis on conservation condition found that there are two chips in the spout with their cracks extended. One of the chips is connected with separation added to the crack. The material which has been used for connection in the past was collected for the infrared spectroscopic analysis, which was identified to be nitrocellulose resin for the connection. Therefore, this conservation treatment focused on removing the old material and preventing the spread of cracks. Before conservation treatment, the condition survey and scientific examination for the artifact were carried out to secure data about the earthenware horn cup with horse head decorations(Treasure). Based on them, effective plans for its conservation treatment was sought for and then existing adhesive was safely removed, and restoration material was selected to take into account its reversibility. In addition, the conservation treatment according to optimal methodologies was conducted through the consultation meeting with experts.

Evaluation of Permanent Deformation Characteristics of Recycled Asphalt Concretes Made by Improved Binder-Rejuvenation (바인더 회생방식을 개선한 재생 아스팔트 콘크리트의 소성변형 특성 연구)

  • Kim Kwang-Woo;Kweon Oh-Sun;Doh Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.1-13
    • /
    • 2006
  • This paper is one of the studies for developing new methodologies for improving performance of hot-mix recycled asphalt mixtures. The objective of this study is to evaluate rut-resistance characteristics of recycled asphalt mixture which was prepared by newly developed mixing method. The new mixing method provided more sufficient rejuvenation of old binder of reclaimed asphalt pavement (RAP), making homogeneous binder viscosity level in a recycled mixture. Two aggregates (gneiss and granite), two RAP contents (15% and 30%) and two contents (none and 6%) of polymer modifier (LDPE) were used. Recycled mixture was prepared with two methods; method A and method F. To examine difference of binder oxidation level by type of material within a recycled mixture, Gel-permeation chromatography(GPC) analysis was performed on the binders mixed with coarse aggregates and matrix separately. Laboratory tests were performed for evaluation of rut resistance characteristics of each recycled mixture and these includes wheel tracking (WT) test and Kim test. Rut depth and dynamic stability were obtained from WT test and deformation strength $(S_D)$ was obtained from Kim test. The results of regression analysis was shown that correlation $(R^2)$ of F mixing mixtures was higher than one of A mixing mixtures. Therefore, F mixing mixtures showed more consistent rut resistance than h mixing mixtures.

  • PDF

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE THICKNESS OF TOOTH STRUCTURE PENETRATED BY LIGHT AND APPLIED LIGHT CURING TIME (조사광이 통과하는 치질의 두께와 광조사시간에 따른 광중합형 복합레진의 중합률에 관한 연구)

  • Hwang, Kee-Hwan;Jang, In-Ho;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc depend on the degree of conversion of the resin components. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the thickness of tooth structure penetrated by light and applied light curing time. The coronal portions of extracted human teeth (one anterior tooth, three posterior tooth) was embedded by pink denture material. the mounted teeth were cut into three illumination sections (1mm thickness enamel section, 1mm thickness dentin section, 2mm thicknes dentin section) and one backing section with cutting wheel. Thin resin films were made by using 6kg pressure between slide glass during 5 minutes Thin resin film was light cured on coupled illumination section during 40sec, 80sec and 120sec. each illumination section was coupled as follows; no tooth structure(X), ename section(E), enamel section + 1mm dentin section(ED1), enamel section + 2mm dentin section(ED2), enamel section + 1mm dentin section + 2mm dentin section(EDD). To simulate the clinical situation more closely, thin resin films was cured against a backing section of tooth structure. The degree of conversion of carbon double bonds to single bonds in the resin films were examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows ; 1 As curing time was increased, conversion rate was increased and as tooth thickness which was penetrated by curing light was increased, conversion rate was decreased. 2. At all tooth thickness groups, conversion rate between 80sec and 120sec was not significantly increased(P>0.05). 3. At 40sec group and 80sec, conversion rate between no tooth structure(X) group and 1mm enamel section(E) group was not significantly decreased(P>0.05). 4. At 80sec group and 120sec, conversion rate between 1mm enamel section(E) group and 1mm enamel section + 1mm dentin section(ED1) group was not significantly decreased(P>0.05).

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions (다양한 조건에 따른 주철 소재의 마찰/마모 특성에 관한 연구)

  • Joo, Ji-Hoon;Kim, Chang-Lae;Nemati, Narguess;Oh, Jeong-Taek;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.765-772
    • /
    • 2015
  • Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

Evaluation of Performance and Construction the New National Test Road Sites of Modified Asphalt (신설국도의 시험시공을 통한 표층용 개질 아스팔트 공용성 평가)

  • Cho, Gyu-Tae
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.43-49
    • /
    • 2002
  • Asphalt pavements have to perform under the conditions of heavily-loaded vehicles due to the industrialization and large temperature variance between the summer and the winter. Due to these factors, a characteristics change of early permanent deformation becomes a big issue, and to remedy this problem many research to use modified asphalt are being widely conducted. However, most of the modified asphalt is being paved after milling the surface course and applying tackcoating, and it is being used mostly for the repair and maintenance purpose rather than pavement of new national road. The purpose of this investigation is to obtain some fundamental data for the evaluation of the performance and long-term performance of the construction material mixtures by the laboratory test and field experiments. For the field experiment, 200m of two-lanes national road, that is being paved for the new national road under the direction of Pusan Regional Construction Management Office, was paved with SBS PMA and PSMA asphalt mixtures, which are an modified asphalt mixtures used for the surface course, on top of the base course paved with other modified asphalt mixtures. The remaining section of the new national road was paved with dense grade mixture. The laboratory tests assessed and analyzed the mixture characteristics by Marshall's stability test, strength tests and wheel-tracking test. On the basis of the evaluation result of the temperature control and roughness of the newly constructed road at the field experiment site, it is desired to evaluate and identify the most economic modified asphalt mixtures by long-term performance evaluation and LCC(Life Cycle Cost) analysis in order to apply the test result to the design of new road construction in the future.

  • PDF