• Title/Summary/Keyword: wheel & axle

Search Result 145, Processing Time 0.025 seconds

A Study on Cost Optimization of Preventive Maintenance for the Second Driving Devices for Korea Train Express (KTX 2차 구동장치에 대한 예방정비 비용의 최적화에 관한 연구)

  • Jung, Jin-Tae;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Although the second driving device of KTX, which consists of the wheel and the axle reduction gears unit, is a mechanically integrated structure, its preventive maintenance (PM) requires two separate intervals due to the different technical requirements. In particular, these subsystems perform attaching and detaching work simultaneously according to the maintenance directive. Therefore, to reduce the unnecessary amount of PM and high logistic availability of the train, it is important to optimize PM with regard to reliability-centered maintenance toward a cost-effective solution. In this study, fault tree analysis and reliability of the subsystems, considering the criticality of the components, were performed using the data derived from field data in maintenance. The cost optimization of the PM was derived from a genetic algorithm considering the target reliability and improvement factor. The cost optimization was derived from a maximum of the fitness function of the individual in generation. The optimal TBO of them using the genetic algorithm was 2.85x106 km, which is reduced to approximately 21% compared to the conventional method.

Application of Recursive Least Squares Method to Estimate Rail Irregularities from an Inertial Measurement Unit on a Bogie (대차 관성측정 장치에서 궤도틀림 추정을 위한 반복 최소자승법의 적용)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.427-434
    • /
    • 2011
  • This paper is focused on application of recursive least squares method to estimate rail irregularities from the acceleration measurement on an axle-box or a bogie for the rail condition monitoring with in-service high-speed trains. Generally, the rail condition was monitored by a special railway inspection vehicle but the monitoring method needs an expensive measurement system. A monitoring method using accelerometers on an axle-box or a bogie was already proposed in the previous study, and the displacement was successfully estimated from the acceleration data by using Kalman and frequency selective band-pass filters. However, it was found that the displacement included not only the rail irregularities but also phase delay of the applied filters, and effect of suspension of the bogie and conicity of the wheel. To identify the rail irregularities from the estimated displacement, a compensation filter method is proposed. The compensation filters are derived by using recursive least squares method with the estimated displacement as input and the measured rail irregularity as output. The estimated rail irregularities are compared with the true rail irregularity data from the rail inspection system. From the comparison, the proposed method is a useful tool for the measurement of lateral and vertical rail irregularity.

  • PDF

A study on the structural characteristics and roll behavior of suspension for the section profile of torsion beam (토션빔의 단면형상에 다른 현가계의 구조적 특성과 롤 거동에 관한 연구)

  • 이동찬;변준형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.195-202
    • /
    • 1999
  • The kinematic and complicance characteristics of torsion beam axle is structurally related to the location and section profile of torsion beam and the span from body mounting point to wheel center. This paper presents the effect of section properties in torsion beam on the structural characteristics and roll behavior of suspension. The structural characteristics is on the maximum stress on the welding area of torsion beam and the roll behavior is on roll steer and roll-camber of suspension which are important for controllability and stability in cornering. Four factors are used for the section design of torsion beam, which are thickness , midline length, are inner radius, and sector half angle . Through the structural and quasi-static analysis made for six torsion beam axle models, it can be noticed that roll steer and the structural durability of suspension are closely related to warping constant and shear center in section properties of torsion beam.

  • PDF

Development of Leveling Control System for a Slope Land Tractor - Performance of leveling control by hydraulic system - (경사지 트랙터용 차체 수평제어 시스템 개발 - 유압시스템의 수평제어 성능 -)

  • Lee, S. S.;Oh, K. S.;Lee, J. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.203-210
    • /
    • 2002
  • In this study, the leveling control system for a tractor has been developed. The experimental model showed that the implementation of the proposed hydraulic control system fur the prototype design of a slope land tractor was feasible. The front axle was designed as a center pin type and the rear axle was designed as a trailing arm type. The leveling control of the body on the slope land was accomplished by controlling the height of the right and left trailing arms using the electronic controlled hydraulic cylinder. The maximum leveling control angles were ${\pm}$15$^{\circ}$ for roll angle and 7$^{\circ}$far pitch angle. The front and rear wheel drives were transmitted by gears from the main shaft to the final drive. The adaptability of the hydraulic control system was tested and investigated by analyzing the system response in time and frequency domain. The hydraulic control system on a step input showed a linearly increasing trend without any overshoot state. The hydraulic control system on a frequency input showed a little phase differences and gain drops within the range of 0.3Hz.

The Study on Correlation and Transformation Matrix Development in terms of Loading Histories of Body and Chassis for CTBA Suspension (CTBA 샤시 부품과 마운팅부 차체 입력 하중과의 상관성 연구 및 변환행렬식 개발)

  • Ha, Dong-Hyun;Park, Soon-Cheol;Jung, Won-Wook
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • The torsion beam type of rear suspension has been adopted by most manufactures of small to medium front wheel drive passenger cars. Previous studies analyzed only the load characteristics of CTBA(the coupled torsion beam axle)'s components. This paper analyzed the results of measurement after measuring loads and displacements, angles when a car equipped with the coupled torsion beam axle is driving in various roads. The most important durability factors for CTBA part are the force and direction of rear CTBA trailing arm. If there are design changes, it was difficult to make a sensor and install each time for measuring the trailing arm forces. After analyzing the loading histories between body and chassis, we developed the transformation matrix that can be converted to mutual force. This paper also deals with the analysis of the force behavior through the analysis of the influence and correlation between the body and chassis parts of cars.

The Transmission Development with P.T.O Axle Design for Work Vehicle Including Multi-faculty (다기능 작업차를 위한 P.T.O 축 및 트랜스밋션의 최적설계 및 개발)

  • Kwac, Lee-Ku;Kim, Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.108-117
    • /
    • 2008
  • A transmission designed with P.T.O(Power Take-Off) axle for agricultural work vehicles including multi-purpose vehicles has been developed. It is focused on the 4-wheel drive transmission of synchronous contact type for practical use in fruit tree households which is required for a large-sized agricultural vehicle. Concerning to the specification performed, the load capacity is from 500kg to 1,000kg and the safety should be secured for passengers. In addition, the driving condition should also be secured under bad situations of the topographic slope, swampy land and the rest. In order to carry out above tests, a prototype vehicle through strength analysis of transmission design has been manufactured. Consequently, optimal design conditions on the power transmission with multi-purpose vehicle for various jobs are proposed such as an indication of optimal RPM and torque at a certain work situation. The performance test through the prototype of multi-purpose work vehicle is performed and the related data base is achieved. Finally, it is improved on troubles by the analysis of the results of R&D and provided the solutions on problems occurring to mass production in the future.

Study on Mechanical Parameters of a Wheelset Influencing Derailment of Rolling Stock (철도차량탈선에 영향을 미치는 윤축의 기계적 인자에 관한 연구)

  • Oh, Hyun Sun;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1207-1218
    • /
    • 2013
  • It is difficult to predict derailment with the existing derailment coefficient like Nadal's formula which is based on the contact forces between one wheel and rail. A new derailment coefficient model developed on a wheelset is able to make a better estimate about the climb derailment, slip derailment, roll over derailment, and mixed derailment types of these. Moreover, not only the mechanical factors considered in the existing derailment coefficients but also other various factors affecting derailment such as wheel unloading and loading, diameter of wheel, and locations of axle-box bearings can be covered with this new derailment coefficient model. That is, the derailment patterns which couldn't be solved with the existing formulas such as Nadal's and Weinstock's models can be analyzed with this wheelset derailment coefficient model because of considering various factors causing derailment. Finally, the validity of the new derailment coefficient model is verified using dynamic model simulations.

Endurance Life of Taper Roller Bearing for Wheel Loader Axles (휠 로더 차축 테이퍼 롤러 베어링의 내구수명)

  • Yoo, Dae Won;Lee, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1323-1330
    • /
    • 2013
  • A wheel loader is a type of construction machinery that is capable of performing a variety of tasks, and demands on its functional diversity and structural reliability are growing. A wheel bearing is one of the core components that determine the life of the loader; taper roller bearings are commonly used for this purpose. The lifetime of a bearing is typically calculated based only on its load and revolution speed. The initial preload of a taper roller bearing is a critical factor that directly affects its endurance life. In this study, the relations between the endurance life and preload characteristics including the amount of preload according to the weight, rotational speed, and thermal modification applied to tapered roller bearings are presented. When the temperature is $100^{\circ}C$, an excessive preload condition is expected compared with that at room temperature, and the durable life decreases by 20.3 %.

Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator (21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석)

  • Lee, JunHee;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.