• Title/Summary/Keyword: wheat streak mosaic virus

Search Result 3, Processing Time 0.018 seconds

Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

  • Lee, Siwon;Kim, Jin-Ho;Choi, Ji-Young;Jang, Won-Cheoul
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.438-440
    • /
    • 2015
  • We developed a loop-mediated isothermal amplification (LAMP) method to rapidly diagnose Wheat streak mosaic virus (WSMV) during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

Development of PCR Diagnosis System for Plant Quarantine Seed-borne Wheat Streak Mosaic Virus (식물검역 종자전염 Wheat Streak Mosaic Virus의 PCR 검사시스템 개발)

  • Lee, Siwon;Kang, Eun-Ha;Chu, Yeon-Mee;Shin, Yong-Gil;Ahn, Tae-Young
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Wheat streak mosaic virus (WSMV), a member of the genus Tritimovirus in Potyviridae, severely impacts wheat and corn seed worldwide, but has yet to be detected in Korea, and hence, every effort should be made to prevent its introduction. To prevent WSMV from entering the country, it is necessary to prepare a specific, sensitive, simple, and fast detection method for routine application to plant quarantine procedures. For this reason, a two-step diagnosis system consisting of RT-PCR and nested PCR is being used for WSMV detection. In addition, a novel positive control was developed for use with the system. WSMV has been detected in seed sweet corn from Japan and seed wheat from USA by a two-step diagnosis system, the details of which are described in this study. After sequence analysis, similarities of 80.6 and 100.0% with other isolates were determined by BLAST. They showed the same topology, which was classified as 4 genotypes by various phylogenetic trees, using a poly protein encoding sequence amplification. In this analysis, WSMV-JSweet-corn2868 (JX845574) is classified as clade B, while WSMV-Uwheat1944-1 (KC754959) and WSMV-Uwheat1944-2 (KC754960) belong to clade D.

Double membrane-bound particles associated with eriophyid mite-borne plant diseases of unknown etiology : a potentially new group of plant viruses\ulcorner

  • Ahn, Kyung-Ku;Kim, Kyung-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1997.06a
    • /
    • pp.5-21
    • /
    • 1997
  • Unique virus-like particles were associated with five eriophyid mite-borne plant diseases of unknown etiology; fig mosaic, redbud yellow ringspot, rose orsette, thistle mosaic, and high plains disease of corn and wheat. Quasi-spherical, double membrane-bound particles (DMPs), 120 - 200 nm in diameter, were observed in the cytoplasm of all cell types in symptomatic leaves of infected plants. No DMPs were observed in symptomless plants. The DMPs in symptomatic thistles were associated with two types of inclusions, electron-dense amorphous material and tubular aggregates. Similar amorphous inclusions were also found in corn and wheat with high plains disease, while tubular inclusions were observed in figs with mosaic symptoms. The particles and inclusions were similar in some aspects to immature particles associated with viroplasms of animal and insect poxviruses and also to the double-enveloped particles of tomato spotted wilt virus associated with viroplasms during early stages of infection, but were unique and unlike any known plant viruses. The DMPs and associated viroplasm-like inclusions in the high plains disease were specifically immunogold labeled in situ with the disease-specific antiserum. Thread-like structures, similar to tenuivirus particles, present in the partially purified virus preparations were also immunogold labeled with the antiserum. It is suggested that the thread-like structures are derived from the DMP. In many cells of symptomatic corn and wheat samples, DMPs occurred together with flexuous rod-shaped particles and cylindrical inclusions of wheat streak mosaic potyvirus (WSMV), suggesting that the disease is caused by a mixed infection of WSMV and the agent represented by the DMPs. Based on cytopathology, symptomatology and mite and/or graft-transmissibility, the five diseases described in this paper are potentially caused by virus(es) and the DMPs associated with these diseases may represent virus particles. If the DMPs are indeed viral in nature, they would comprise a new group of plant viruses.

  • PDF