• Title/Summary/Keyword: wheat kernel

Search Result 46, Processing Time 0.037 seconds

Single-Kernel Characteristics of Soft Wheat in Relation to Milling and End-Use Properties

  • Park, Young-Seo;Chang, Hak-Gil
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.918-923
    • /
    • 2007
  • To investigate the relationship of wheat single kernel characteristics with end-use properties, 183 soft wheat cultivars and lines were evaluated for milling quality characteristics (kernel hardness, kernel and flour protein, flour ash), and end-use properties (i.e., as ingredients in sugar-snap cookies, sponge cake). Significant positive correlations occurred among wheat hardness parameters including near-infrared reflectance (NIR) score and single kernel characterization system (SKCS). The SKCS characteristics were also significantly correlated with conventional wheat quality parameters such as kernel size, wheat protein content, and straight-grade flour yield. The cookie diameter and cake volume were negatively correlated with NIR and SKCS hardness, and there was an inverse relationship between flour protein contents and kernel weights or sizes. Sugar-snap cookie diameter was positively correlated with sponge cake volume.

Analysis of Kernel Hardness of Korean Wheat Cultivars

  • Hong, Byung-Hee;Park, Chul-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • To investigate kernel hardness, a compression test which is widely used to measure the hardness of individual kernels as a physical testing method was made simultaneously with the measurement of friabilin (15KDa) which is strongly associated with kernel hardness and was recently developed as a biochemical marker for evaluating kernel hardness in 79 Korean wheat varieties and experimental lines. With the scattered diagram based on the principal component analysis from the parameters of the compression test, 79 Korean wheat varieties were classified into three groups based on the principal component analysis. Since conventional methods required large amount of flour samples for analysis of friabilin due to the relatively small amount of friabilin in wheat kernels, those methods had limitations for quality prediction in wheat breeding programs. An extraction of friabilin from the starch of a single kernel through cesium chloride gradient centrifugation was successful in this experiment. Among 79 Korean wheat varieties and experimental lines 50 lines (63.3%) exhibited a friabilin band and 29 lines (36.7%) did not show a friabilin band. In this study, lines that contained high maximum force and the lower ratio of minimum force to maximum force showed the absence of the friabilin band. Identification of friabilin, which is the product of a major gene, could be applied in the screening procedures of kernel hardness. The single kernel analysis system for friabilin was found to be an easy, simple and effective screening method for early generation materials in a wheat breeding program for quality improvement.

  • PDF

Effects of Flour Products on Wheat Hardness (밀의 경도가 밀가루 제품에 미치는 영향)

  • 김혁일;하영득
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 1991
  • aThe terms of hard and soft as applied to wheats are descriptions of the texture of the kernel. A hard wheat kernel required greater force to cause it to disintegrate than those a soft wheat kernel. Factors than can affect the measurement of hardness outnumber those that affect hardness itself. Kernel texture is the most important single characteristic that affects the functionality of a common wheat. It affect the way in which must be tempered for milling ; the yield and the particle size, and density of flour particles ; and the end use properties in milling, breadmaking, production of soft wheat products, and noodle-making. Papers are reviewed from various sources not only hardness but flour functionality.

  • PDF

Changes in Mining Properties During Maturation of Wheat Kernel (소맥의 등숙에 따른 제분특성의 변화)

  • 김경제;장학길
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.381-387
    • /
    • 1985
  • Development and maturation of wheat were studied with reference to the quality of grain and milling properties. 1000-kernel weight and test weight increased as the wheat matured and as the orginal moisture decreased. The time of maturity was estimated 40 days after heading. Moisture content of wheat grain had a correlation coefficient of -0.877** with 1000-kernel weight, of -0.761** with test weight, and of 0.915** with pearling index. The milling data suggest that even in the early stages of maturing, the endosperm represented at large proportion of the grain. However, milling score was relatively constant at about 40 days. Break-Reduction flour ratio was a great difference between wheat varieties. 1000-kernel weight had a high significant correlation of +0.603** with milling yield, of -0.958** with ash content, and of +0.956** with milling score.

  • PDF

The Effect of Change in Moisture Content on Some Physical Properties of Grains (I) -Spericity, Weight, Volume- (含水率變化가 穀物의 物理的 特性에 미치는 影響(I) -球形率, 重量, 體積-)

  • Oh, Moo-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.59-68
    • /
    • 1984
  • The Purpose of this study was to investigate the effect of the change in misture content on some physical properties of grains, and some relations amont the properties. Materials included ere rough rice, brown rice, barley and wheat with the range of moisture content of 6~26 percent, 7~25 percent, 10~24 percent and 6~22 percent, respectively. Kernel dimension, sphericity, kernel weight, and volume were included as the physical properties of the grains. The results obtained are summarized as follows; 1. The ratio of grain length to the thickness was in the range of 3.59~4.16 for rough rice(Indica type), 2.98~3.27 for rough rice(Japonica type), 3.25 for brown rice (I.T.), 2.14~2.38 for brown rice(J.T.), 2.92~3.13 for barley and 2.10~2.21 for wheat, respectively. 2. The sphericity was found to be 42 percent for rough rice(I.T.), 48 percent for rough rice(J.T.), 52 percent for brown rice(I.T.), 62 percent for brown rice(J.T.), 45 percent for barley and 61 percent for wheat, respectively. 3. The kernel weight of grains was linealy increased with the increase of moisture content. At a specified moisture centent of 14 percent, the kernel weight was shown to be in the range of 4.72${\times}10^{-5}$~3.58${\times}10^{-5}$kg for wheat, 3.60${\times}10^{-5}$~3.12${\times}10^{-5}$kg for barley, 2.80${\times}10^{-5}$~2.35${\times}10^{-5}$kg for rough rice, and 2.24${\times}10^{-5}$~1.82${\times}10^{-5}$kg for brown rice, respectively. 4. The kernel volume was linearly increased with increase of moisture content. The rate of increase was significantly low for rough rice in comparison with the remaining grains. The kernel volume, at a specified moisture content of 14 percent, was in the range of 3.51${\times}10^{-8}$~2.76${\times}10^{-8}m^3$ for wheat, 2.84${\times}10^{-8}$~2.43${\times}10^{-8}m^3$ for barley, 2.93${\times}10^{-8}$~1.97${\times}10^{-8}m^3$ for rough rice, and 1.61${\times}10^{-8}$~1.29${\times}10^{-8}m^3$ for brown rice, respectively. 5. The kernel volume of grains was found to be related to the length, width, thickness and kernel weight as a exponential function. The kernel volume was shown to have correlation coefficient to the length factor rough rice and barley which were of low sphericity, while the width factor was predominant for brown rice and wheat which was of high sphericity.

  • PDF

Current Wheat Quality Criteria and Inspection Systems of Major Wheat Producing Countries (밀 품질평가 현황과 검사제도)

  • 이춘기;남중현;강문석;구본철;김재철;박광근;박문웅;김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.63-94
    • /
    • 2002
  • On the purpose to suggest an advanced scheme in assessing the domestic wheat quality, this paper reviewed the inspection systems of wheat in major wheat producing countries as well as the quality criteria which are being used in wheat grading and classification. Most wheat producing countries are adopting both classifications of class and grade to provide an objective evaluation and an official certification to their wheat. There are two main purposes in the wheat classification. The first objectives of classification is to match the wheat with market requirements to maximize market opportunities and returns to growers. The second is to ensure that payments to glowers aye made on the basis of the quality and condition of the grain delivered. Wheat classes has been assigned based on the combination of cultivation area, seed-coat color, kernel and varietal characteristics that are distinctive. Most reputable wheat marketers also employ a similar approach, whereby varieties of a particular type are grouped together, designed by seed coat colour, grain hardness, physical dough properties, and sometimes more precise specification such as starch quality, all of which are genetically inherited characteristics. This classification in simplistic terms is the categorization of a wheat variety into a commercial type or style of wheat that is recognizable for its end use capabilities. All varieties registered in a class are required to have a similar end-use performance that the shipment be consistent in processing quality, cargo to cargo and year to year, Grain inspectors have historically determined wheat classes according to visual kernel characteristics associated with traditional wheat varieties. As well, any new wheat variety must not conflict with the visual distinguishability rule that is used to separate wheats of different classes. Some varieties may possess characteristics of two or more classes. Therefore, knowledge of distinct varietal characteristics is necessary in making class determinations. The grading system sets maximum tolerance levels for a range of characteristics that ensure functionality and freedom from deleterious factors. Tests for the grading of wheat include such factors as plumpness, soundness, cleanliness, purity of type and general condition. Plumpness is measured by test weight. Soundness is indicated by the absence or presence of musty, sour or commercially objectionable foreign odors and by the percentage of damaged kernels that ave present in the wheat. Cleanliness is measured by determining the presence of foreign material after dockage has been removed. Purity of class is measured by classification of wheats in the test sample and by limitation for admixtures of different classes of wheat. Moisture does not influence the numerical grade. However, it is determined on all shipments and reported on the official certificate. U.S. wheat is divided into eight classes based on color, kernel Hardness and varietal characteristics. The classes are Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, Hard White, soft White, Unclassed and Mixed. Among them, Hard Red Spring wheat, Durum wheat, and Soft White wheat are further divided into three subclasses, respectively. Each class or subclass is divided into five U.S. numerical grades and U.S. Sample grade. Special grades are provided to emphasize special qualities or conditions affecting the value of wheat and are added to and made a part of the grade designation. Canadian wheat is also divided into fourteen classes based on cultivation area, color, kernel hardness and varietal characteristics. The classes have 2-5 numerical grades, a feed grade and sample grades depending on class and grading tolerance. The Canadian grading system is based mainly on visual evaluation, and it works based on the kernel visual distinguishability concept. The Australian wheat is classified based on geographical and quality differentiation. The wheat grown in Australia is predominantly white grained. There are commonly up to 20 different segregations of wheat in a given season. Each variety grown is assigned a category and a growing areas. The state governments in Australia, in cooperation with the Australian Wheat Board(AWB), issue receival standards and dockage schedules annually that list grade specifications and tolerances for Australian wheat. AWB is managing "Golden Rewards" which is designed to provide pricing accuracy and market signals for Australia's grain growers. Continuous payment scales for protein content from 6 to 16% and screenings levels from 0 to 10% based on varietal classification are presented by the Golden Rewards, and the active payment scales and prices can change with market movements.movements.

Changes in Protein, Rheology and Bread-Making Properties of Wheat during Kernel Maturation (소맥(小麥)의 성숙(成熟)에 따른 단백질(蛋白質), 리올로지 및 제(製)빵특성(特性)의 변화(變化))

  • Chang, Hak-Gil;Byoun, Kwang-Eui
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.278-283
    • /
    • 1985
  • These studies were conducted to investigate the changes and relation in protein, rheology and bread-mating properties during hard and soft wheat maturation. Samples were collected from the fields at 25 to 50 days after heading at intervals of 5 days. Protein content, sedimentation value and Pelshenke value of the tested wheat kernel or flour differed significantly between hard and soft wheat, and was relatively constant at 35 to 40 days after heading in each cultivar. In Mixogram water absorption of the flour, soft wheat increased only slightly, while intermediate and hard wheat increased remarkedly with maturation of the kernel. Total Mixogram characteristics increased and reached its maximum level at 35 days after heading. Farinogram pattern and bread loaf volume of the flour was greatly differences at the early stages of development due to cultivar, and was relatively constant at 40 days after heading. Significant positive and negative correlations were obtained among the protein and rheological properties, and tread loaf volume as the kernel matured.

  • PDF

Physicochemical Properties and Sugar-Snap Cookie Making Potentialities of Soft Wheat Cultivars and Lines (Triticum aestivum L. em Thell.) (연질밀(Triticum aestivum L. em Thell.)의 이화학적 특성과 sugar-snap cookie의 제조적성)

  • Lee, Yong-Suk;Kim, Jong-Goon;Won, Joon-Hyung;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.846-855
    • /
    • 2002
  • Several soft white spring and winter wheat cultivars were evaluated by analyzing physicochemical properties such as Single Kernel Characterization System (SKCS), milling properties, Rapid Visco-Analyzer (RVA), mixograph pattern, and sugar-snap cookie-making potentialities. Results of SKCS revealed kernel hardness had a positive correlation coefficient with test weight $(r=0.497^{*})$ and near-infrared reflectance (NIR) hardness $(r=0.495^{*})$. SKCS kernel weight had a significantly high correlation of $r=0.942^{**}$ with SKCS kernel size. The test weight had significantly high correlations with straight-grade flour yield $(r=0.720^{**})$, break flour yield $(r=0.490^{*})$, flour ash content $(r=-0.781^{**})$, and milling score $(r=0.838^{**})$. The average RVA peak viscosity of the soft white winter wheat was higher (195.1 unit) than the soft white winter wheat varieties (135.7 unit). A correlation was found between RVA peak viscosity and swelling volume. Significant correlation coefficients were obtained among cookie properties, milling properties, protein content, and mixograph absorption. The cookie top grain score had a correlation coefficient of $r=0.447^{*}$ with swelling volume.

Current Regional Cultural Situation and Evaluation of Grain Characteristics of Korean Wheat II. Grain Characteristics Collected in Domestic Wheat Cultivar Grown in Korea (국산밀 품질 향상을 위한 지역별 재배 현황 및 원맥 특성 평가 II. 농가 수집 원맥 특성 평가)

  • Kim, Kyeong-Hoon;Kang, Chon-Sik;Seo, Yong-Won;Woo, Sun-Hee;Heo, Moo-Ryong;Choo, Byung-Kil;Lee, Choon-Kee;Park, Kwang-Geun;Park, Chul Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Agronomic characteristics and grain properties of Korean wheat of 175 farmers in nationwide for two years, 2010/2011 and 2011/2012, were evaluated to support basic data for improving grain quality of Korean wheat and enhancing Korean wheat consumption. Agronomic characteristics, including culm length, spike length, number of $spike/m^2$ and rate of off-type plant, and grain properties, including 1000 kernel weight, test weight, moisture, ash and protein content, were influenced by year and location. Number of $spike/m^2$, test weight, moisture, ash and protein content of wheat cultivated in 2011 were higher than those of 2012 and culm length, spike length, rate of off-type plant and 1000 kernel weight of 2012 were higher than those of 2011. Wheat cultivated in southern part of Korea showed higher culm length and 1000 kernel weight and lower test weight than those of northern part of Korea. Spike length, number of $spike/m^2$ and test weight were reduced by additional fertilization after mid of March, although there was no significant difference between date of additional fertilization and grain properties. Cultivated wheats in Jeollabuk-do showed lower ash content and higher protein content than those of other provinces and cultivated wheats in Jeollanam-do exhibited higher ash content than that of other provinces. As amount of fertilization increased, culm length, 1000 kernel weight and protein content increased and spike length and ash content were decreased, although date of additional fertilization did not effect on agronomic characteristics and grain properties. Amount of fertilization was positively correlated with 1000 kernel weight and protein content (r = 0.159, P < 0.05 and r = 0.212, P < 0.01, respectively) and was negatively correlated with ash content (r = -0.185, P < 0.05). Thousand kernel weight was negatively correlated with ash content (r = -0.226, P < 0.01) and positively correlated with protein content (r = 0.207, P < 0.01). Ash content increased as test weight and culm length decreased and 1000 kernel weight was influenced by culm and spike length (r = 0.397, P < 0.001 and r = -0.205, P < 0.01, respectively).

Physicochemical Properties and the Product Potentiality of Soft Wheats (연질밀의 품종별 이화학적 특성 및 제품의 제조적성)

  • Lim, Eun-Young;Chang, Hak-Gil;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-418
    • /
    • 2007
  • The physicochemical properties and mixograph characteristics of soft white winter (SWW) and club wheat, as well as their product potentiality, were investigated. There were no significant differences between the SWW wheat and club wheat regarding their Single Kernel Characterization System (SKCS) properties. The straight-grade flour yield, break flour yield, ash content, and milling score of the SWW wheat were similar to those of the club wheat, and the straight-grade flour yield had a significant positive correlation to the break flour yield (r = 0.805**). The Rapid Visco-Analyzer (RVA) peak viscosity and swelling volume of the SWW wheat flour were very similar to those of the club wheat flour, and there was a significant positive correlation between the RVA peak viscosity and the swelling volume (r = 0.662**). The average mixograph absorption of the SWW wheat was higher than that of the club wheat. The club wheat resulted in a higher cookie diameter than the SWW wheat, but the difference was not significant. The sponge cake volume using the SWW wheat flour was higher than that with the club wheat flour. In addition, there was a significant correlation between the cookie diameter and the sponge cake volume (r = 0.745**).