• Title/Summary/Keyword: wetting resistance

Search Result 85, Processing Time 0.038 seconds

Charge Transport at the Interfaces between Carbon Nanotube and Wetting Metal Leads Mediated via Topological Defects

  • Ko, Kwan Ho;Kim, Han Seul;Kim, Hu Sung;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.179.2-179.2
    • /
    • 2014
  • Carbon nanotubes (CNT)-metal contacts play an important role in nanoelectronics applications such as field-effect transistor (FET) devices. Using Al and (10,0) CNT, we have recently showed that the CNT-metal contacts mediated via topological defects within CNT exhibits intrinsically low contact resistance, thanks to the preservation of the sp2 bonding network at the metal-CNT contacts.[1] It is well-established that metals with good wetting property such as Pd consistently yield good contacts to both metallic and semiconducting CNTs. In this work, the electronic and charge transport properties of the interfaces between capped CNT and Pd will be investigated based on first-principles computations and compared with previous results obtained for the Al electrodes.

  • PDF

Fabrication and Characterizations of Nickel Metal Mask with fine Pitch by Additive Process (Additive 공정을 이용한 미세 피치용 니켈 메탈마스크의 제조 및 특성평가)

  • Park, Eui-Cheol;Lim, Jun-Hyung;Kim, Kyu-Tae;Park, Si-Hong;Hwang, Soo-Min;Shim, Jong-Hyun;Jung, Seung-Boo;Kim, Bong-Soo;Joo, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.925-931
    • /
    • 2007
  • We successively fabricated the Ni metal mask by additive method and evaluated the effects of wetting agents addition on the microstructure, hardness, and friction coefficient. In the process, the additive patterns with fine hole and pitch were made by photolithography technique and subsequently Ni plate was electroformed on the patterns. We found that the microstructure and mechanical properties were significantly varied when the different combinations of the wetting agents were used. When the wetting agents of both SF-1 and SF-2 were added, the microstructure consisted of crystal and amorphous phases, the grain size reduced to 5-40 nm, the RMS value decreased to 11.4 nm and the wear resistance improved. In addition, the hardness was as high as 638 Hv which is higher than that of commercial stainless steel mask and this improvement is probably due to the presence of amorphous Phase and fine grain size. The improvement of the wear resistance can provide a higher reliability and a longer service life.

An Experimental Study on the Rolling Resistance of Silver Coating Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.49-58
    • /
    • 1998
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver coated 52100 bearing steel. Plasma surface modifications were performed on the silver coated specimen to change the wetting characteristics. Experiments using a thrust ball beating-typed roiling test-rig were performed under vacuum, dry air and various tmmidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

  • PDF

An Experimental Study on the Rolling Resistance of Silver-Coated Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.321-327
    • /
    • 1999
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver-coated 52100 bearing steel. Plasma surface modifications were performed on the silver-coated specimen to change the wetting characteristics. Experiments using a thrust ball bearing-type rolling test-rig were performed under vacuum, dry air and various humidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

A Study of Enhancing Reliability for Determining the Resistance to Surface Wetting by Imaging Process (이미징 기반의 발수도 판별을 통한 측정 신뢰도 향상에 관한 연구)

  • Kim, Sung-wuk;Chun, Sang Hee;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.483-489
    • /
    • 2017
  • The purpose of this study was to propose useful suggestions for enhancing reliability to determine the resistance against surface wetting, KS K 0590, by an imaging process. We validated the standard spray test rating chart for determining quantification standard using JAVA script-based imaging process program. All of the acquired images were processed with the image software, Image J (NIH, Nethesda, MD, USA). The study results are as follows. We established the surface area measurement-based quantitative criteria for determining resistance to surface wetting. The standard spray test rating chart was converted into a numerical standard which leads easy-to-determine ratings. We also validated the procedure for imaging treatment by analyzing quantitative data. We introduced the fluorescence image for determining ratings by enabling threshold settings and binary image conversion as an optimal imaging process. It is expected that imaging-based determination for resistant to surface wetting will serve as an accurate and reliable method for KS K 0590.

Properties of the White 5K Au-Ag-In Alloys with Indium Contents (백색 5K Au-Ag-In 합금재의 인듐 첨가량에 따른 물성 변화)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.381-385
    • /
    • 2017
  • In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> $70^{\circ}C$) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-AgIn alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.

The Analysis on the Activation Procedure of Polymer Electrolyte Fuel Cells

  • Jang, Jong-Mun;Park, Gu-Gon;Sohn, Young-Jun;Yim, Sung-Dae;Kim, Chang-Soo;Yang, Tae-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.131-135
    • /
    • 2011
  • It is, in general, believed that during the activation process, the proton conductivity increases due to wetting effect and the electrochemical resistance reduction, resulting in an increase in the fuel cell performance with time. However, until now, very scant information is available on the understanding of activation processes. In this study, dominant variables that effect on the performance increase of membrane electrode assemblies (MEAs) during the activation process were investigated. Wetting, pore restructuring and active metal utilization were analyzed systematically. Unexpectedly, the changes for both ohmic and reaction resistance characterized by the electrochemical impedance spectroscopy (EIS) after initial wetting process were much smaller when considering the degree of cell performance increases. However, the EIS spectra represents that the pore opening of electrode turns into gas transportable structure more easily. The increase in the performance with activation cycles was also investigated in a view of active metals. Though the particle size was grown, the number of effective active sites might be exposed more. The impurity removal and catalytic activity enhancement measured by cyclic voltammetry (CV) could be a strong evident. The results and analysis revealed that, not merely wetting of membrane but also restructuring of electrodeand catalytic activity increase are important factors for the fast and efficient activation of the polymer electrolyte fuel cells.

An Evaluation of Factors Influencing the Thermal Insulation and Evaporative Resistance of a Waterproof and Breathable Garment System (투습방수의류의 보온력 및 증발저항 평가와 관련 변인)

  • Shim, Huen sup
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.4
    • /
    • pp.549-556
    • /
    • 2014
  • This study evaluates the thermal insulation and evaporative resistance of a waterproof and breathable garment system and determines the factors influencing its thermal performance. The experimental garments were composed of underwear (shirts with 100% wool and 100% polyester) and outerwear (jackets and pants with a vapor-permeable membrane and a vapor-impermeable membrane). Data on clothing insulation in a dry condition ($10^{\circ}C$) and a wet condition ($10^{\circ}C$, 40% R.H.), evaporative resistance ($34^{\circ}C$, 40% R.H., and $10^{\circ}C$, 40% R.H.), and microclimate vapor pressure were collected and analyzed. According to the results, the thermal insulation of the experimental garment system ranged 1.27~1.40 in the dry condition and 0.40~0.89 in the wet condition at $10^{\circ}C$. Evaporative resistance ranged $41{\sim}525m^2Pa/W$. A decrease in thermal insulation by wetting underwear ranged 31~67% in the cold condition ($10^{\circ}C$). The breathability of the outer garment influenced the decrease in thermal insulation by wetting. The type of underwear fiber influenced the decrease in thermal insulation only when it was used with breathable outerwear. The vapor-permeable outerwear sample with polyester underwear (P_Perm) showed a larger decrease in insulation than that with wool (W_Perm). The evaporative resistance of the vapor-permeable ensemble showed no effect of underwear in the warm condition ($34^{\circ}C$), but polyester underwear showed lower evaporative resistance than wool in the cold condition ($10^{\circ}C$). The vapor-impermeable ensemble showed no difference in evaporative resistance between polyester underwear and wool underwear in both conditions. Future research should consider various clothing ensemble combinations and environmental conditions and evaluate wear comfort by using human subjects.

Machine learning techniques for reinforced concrete's tensile strength assessment under different wetting and drying cycles

  • Ibrahim Albaijan;Danial Fakhri;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Khaled Mohamed Elhadi;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.

Evaluation on Performance of Repair Mortar Used for Pre-wetting Spray Method (프리웨팅 스프레이 공법용 모르타르의 성능평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki;Kim, Sung Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.235-242
    • /
    • 2005
  • This study is on the evaluation of performance of polymer cement mortar which is used for pre-wetting spray method. Pre-wetting spray method is an epoch-making method to repair concrete structures damaged, which is added a small quantity water preciously to dry mortar to reduce dust and rebound and spray mortar mixed with fixed quantity water at nozzle before spray. The result showed that physical performance such like compressive, flexural and adhesive strength of polymer cement mortar, TS 100 used for pre-wetting spray method was superior to other repair mortar. Also durable performance such as resistance on permeability of chloride ion, carbonation, chemical and freezing-thawing was excellent.