• Title/Summary/Keyword: wet-dry

Search Result 1,947, Processing Time 0.031 seconds

Effect of Insoluble Dietary Fiber Extracted from Salicornia herbacea L. on Large Intestinal Function in Rats (불용성 함초 식이섬유의 섭취가 흰쥐 장기능에 미치는 효과)

  • Kim, Soo-Hwan;Kim, Sook-Ja;Lee, Hyeong-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.648-654
    • /
    • 2014
  • This study investigated the effect of insoluble dietary fibers extracted from Salicornia herbacea L. (S. herbacea) on the improvement of intestinal function in rats. Sprague-Dawley rats were fed on diet containing 5% and 10% S. herbacea dietary fiber (SHDF) for four weeks. Rats receiving the SHDF diet showed a significant decrease in their triglyceride levels and an increase in HDL-cholesterol levels. In addition, compared with the control group, the SHDF group showed a significant increase in the total quantity of the feces and its moisture content. The intestinal transit time of the feces was also shorter in this group. The pH of the feces decreased in all the other experimental groups. Particularly, the bile acid content of the feces and the thicknesses of the mucus layers showed significant recovery on SHDF intake. These results suggest that dietary fiber isolated from S. herbacea has a marked effect on the improvement of bowel function in rats with loperamide (2 mg/kg)-induced constipation.

Bread making Characteristics of Black Rice Bread with Different of Levels of Black Rice Wine (흑미주 첨가량을 달리한 흑미분 첨가 식빵의 제조특성)

  • Lee Kwang-Suck;Yoon Hye-Hyun;Lee Hyun-Jung;An Hye-Lyung
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.794-799
    • /
    • 2005
  • The overall effects of black rice wine (BRW) on black rice bread were examined through the gluten washing test, mixograph and image analysis by Cnunbscan. Commercially produced black rice flour had a much lower amount of gluten than the strong flour However, the mixture with $30\%$(flour basis) black rice flour and $70\%$ strong flour exhibited a good indication for bread making showing $30\%$ wet gluten and $14\%$ dry gluten. In the mixogram results, the peak time showed the highest value for $10\%$ added BRW, indicating an inappropriate level at $50\%$, and the changes of tail width after 8 minutes expressed that the dough became soft and sticky with increasing addition of BRW The volume of bread was increased when BRW was added, and showed the highest value at $20\%$ BRW. In relationship between the volume and bread characteristics, volume showed a highly negative relation with crumb fineness (r=-0.678) and a positive relation with crust thickness (r=0.693).

Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress (구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향)

  • Kim, Min-Ju;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.257-264
    • /
    • 2017
  • Pseudomonas veronii MS1 and P. migulae MS2 have several mechanisms of copper resistance and plant growth promoting capability, and also can alleviate abiotic stress in plant by hydrolysis of a precursor of stress ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC deaminase. In 4-week pot test for tomato growth in soil contained 700 mg/kg Cu, inoculation of MS1 and MS2 significantly increased root and shoot lengths, wet weight and dry weight of tomato plants compared to those of uninoculated control. The inoculated tomato plants contained less amounts of proline that can protect plants from abiotic stress, and malondialdehyde, an oxidative stress marker than those of control. ACC synthase genes, ACS4 and ACS6, and ACC oxidase genes, ACO1 and ACO4, both involved in ethylene synthesis, were strongly expressed in Cu stressed tomato, whereas significantly reduced in tomato inoculated with MS1 and MS2. Also, a gene encoding a metal binding protein metallothionein, MT2 showed similar expression pattern with above genes. All these results indicated that these rhizobacteria could confer Cu resistance to tomato plant under Cu stress and allowed a lower level of Cu stress and growth promotion.

Analysis of General Components and Vitamin and Mineral Contents of the Mushroom Agrocybe chaxingu (차신고버섯(Agrocybe chaxingu)의 일반성분, 비타민 및 미네랄 함량분석)

  • Lee, Kwang-Jae;Yun, In-Jue;Kim, Hee-Yeon;Park, Yu-Hwa;Ham, Hun-Ju;Park, Young-Hak;Joo, Jin-Ho;Lim, Sang-Hyun;Kim, Kyung-Hee
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.549-553
    • /
    • 2009
  • The mushroom Agrocybe chaxingu was analyzed to evaluate the nutritional value of this potential food. The moisture content was 88.9% in the fruiting body of A. chaxingu, and the proportions of ash, crude fiber, carbohydrate, crude protein, and crude fat were 0.9%, 1.4%, 7.2%, 2.5% and 0.4% by weight, respectively. A. chaxingu contained 1.29 mg/100 g edible weight of vitamin $B_1$, and the contents of vitamin $B_2$, vitamin $B_3$, and vitamin C were 0.15 mg, 0.32 mg, and 18.4 mg per 100 g of wet mushroom. Potassium (3,318 mg/100 g, dry basis) was found at the highest concentration in A. chaxingu. In addition, the mushroom contained many other minerals (all figures are mg per 100 g of dried mushroom) such as phosphorus (909.7), magnesium (141.3), sodium (12.7), zinc (7.4), iron (6.5), copper (2.8), manganese (0.8), and nickel (0.1). The results indicate that A. chaxingu is a valuable nutrient source.

Effects of Porosity and Water Content on Thermal Conductivity of Soils (토양의 공극률 및 함수비가 열전도도에 미치는 영향)

  • Cha, Jang-Hwan;An, Sun-Joon;Koo, Min-Ho;Kim, Hyoung-Chan;Song, Yoon-Ho;Suh, Myoung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.27-36
    • /
    • 2008
  • This paper presents a comprehensive laboratory study that examines the effects of porosity, water content, density and grain size distribution on the thermal conductivity of soils which were sampled from 16 synoptic stations of Korea. The experimental results clearly demonstrate that porosity and water content are important parameters which strongly affect the thermal conductivity of soils. Soils with lower porosities and higher water contents have higher thermal conductivities. On the contrary, increase of the matrix density slightly increases the thermal conductivity, and grain size distribution hardly affects the thermal conductivity. Dry soils with the same porosity tend to have more scattered values of thermal conductivity than wet soils. Based on the experimental results, a multiple linear regression model and a nonlinear regression model, having two regression variables of porosity and water content, were presented to predict thermal conductivity. Both models show a high accuracy of prediction with $R^2$ values of 0.74 and 0.82, respectively. Thus, it is expected that the suggested empirical models can be used for predicting thermal conductivity of soils by measuring porosity and water content.

Change of Physical Properties on Long-Term Fertilization of Compost and Silicate in Paddy Soils (퇴비 및 규산질비료의 장기연용에 따른 토양 물리적특성 변화)

  • Park, Chang-Young;Choi, Jyung;Park, Ki-Do;Jeon, Weon-Tai;Kwon, Hye-Young;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This study was carried out to investigate the change of soil physical properties in long-term fertilized paddy soils with a Fine silty family of Typic Halpaqueps (Pyeongtaeg series). Treatments fertilized consisted of no fertilizer, compost, NPK, NPK+compost for thirty one years and of NPK+silicate for seventeen years. Water stable aggregate and degree of aggregate stability, which were higher in surface-soil than sub-soil, were high in order of NPK + compost > NPK + silicate > compost > NPK > no fertilizer plot. The ratio of aggregate larger than 0.5mm was high at compost and silicate plots but that smaller than 0.5mm was high at no fertilizer and NPK plots. And this aggregate stability showed negative correlation with soil hardness and bulk density ; positive correlation with sedimentation volume of soils in water. Sedimentation volume of soils in water was a little higher in surface-soil than sub-soil and in wet soil than dry soil, respectively. Pore space ratio and water retention capacity of soils were the most increased by the application of compost and not affected by silicate as in cases of liquid limit and plastic limit. Ignition loss of soils was high in order of NPK + compost > compost > NPK + silicate > NPK > no fertilizer plot. And field shattering ratio of soil mass smaller than 25.4mm was relatively high in NPK + compost, compost, and silicate plots.

  • PDF

Calibrating Capacitance Sensor for Determining Water Content of Volcanic-Ash Soils (화산회토양의 수분함량측정을 위한 Capacitance Soil Moisture Sensor의 Calibration)

  • Moon, Kyung-Hwan;Joa, Jae-Ho;Choi, Kyung-San;Seo, Hyoeng-Ho;Lim, Han-Cheol;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.331-336
    • /
    • 2011
  • Capacitance soil moisture sensor is extensively used by soil research and irrigation management with its convenience and accuracy. This experiment was conducted to evaluate the acceptability of capacitance soil moisture sensor, named EnviroSCAN made by Sentek Ltd., in Jeju Island where volcanic ash soils are widely distributed, and to calibrate it to various soils with different amount of soil organic matter. For sensor calibration equation of volcanic ash soils, a logarithm function is better than a typical power function of non-volcanic ash soils. So there are possibilities of under evaluated in soil water contents in very wet and very dry conditions by using typical power function with volcanic ash soil areas. We suggested practical coefficients of typical calibration equation for using capacitance sensor in volcanic ash soils, also suggested equations for estimation of them with soil organic matter contents. The measurement of soil water content with a capacitance sensor can be affected by some soil characteristics such as porosity, soil organic matter content, EC, etc. So those factors should be controlled for improving the accuracy of measurement.

A study of improvement of river water quality(T-P) in pilot-scale operation (파일롯 규모의 운영에 따른 하천수질(T-P) 개선에 관한 연구)

  • Choi, Kyoungsoo;Lee, Chaeyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.323-334
    • /
    • 2021
  • Pilot-scale coagulation and sedimentation processes were operated to investigate the T-P (Total phosphorus) removal efficiency. A multiple regression model was also derived to predict the water quality improvement effect with river water characteristics. The inflow rates for the pilot-scale facility were 157-576 m3/day, and the coagulant doses were in the range of 13.7-58.5 mg/L (average 38.9 mg/L) for PAC (Poly alum chloride) and 16.5-62.1 mg/L (average 36.0 mg/L) for alum. The results found that the influent BOD (Biochemical oxygen demand) and T-P concentrations were 4.9 mg/L and 0.115 mg/L, and the removal efficiencies were 52.7% and 59.4%, respectively. T-P removal efficiencies on wet weather days were higher by 10% than dry weather days because influent solids influenced T-P's coagulation process. The pH of river water was 6.9-7.8, and the average pH was 7.3. Although the pH variation was not significant, the trend showed that the treatment efficiency of T-P and PO4-P removal increased. Thus, the pH range considered in this study seems to be appropriate for the coagulation process, which is essential for phosphorous removal. The T-P removal efficiencies were 19.6-93.3% (average 59.2%) for PAC and 16.4-98.5%(average 55.9%) for alum; thus, both coagulants showed similar results. Furthermore, the average coagulant doses were similar at 42.4 mg/L for PAC and 41.3 mg/L for alum. When the T-P concentration of the effluent was compared by the [Al]/[P] ratio, the phosphorus concentration of the treated water decreased with an increasing [Al]/[P] ratio, and the lowest T-P concentration range appeared at the [Al]/[P] ratio of 10-30. A seasonal multiple regression analysis equations were derived from the relationships between 10 independent and dependent variables (T-P concentration of effluent). This study could help lake water quality maintenance, reduce eutrophication, and improve direction settings for urban planning, especially plans related to developing waterfront cities.

Characteristics of OCP of Reinforced Concrete Using Socket-type Electrodes during Periodic Salt Damage Test (주기적 염해 시험에 따른 소켓 타입 전극을 활용한 철근 콘크리트의 OCP 특성)

  • Lee, Sang-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.28-36
    • /
    • 2021
  • It is known that buried rebars inside concrete structures are protected from corrosion due to passive layer. It is very important to delay the timing of corrosion or evaluate a detection of corrosion initiation for the purpose of cost-beneficiary service life of a structure. In this study, corrosion monitoring was performed on concrete specimens considering 3 levels of cover depth(60 mm, 45 mm, and 30 mm), W/C(water to cement) ratio(40.0%, 50.0%, and 60.0%) and chloride concentration(0.0%, 3.5%, and 7.0%). OCP(Open Circuit Potential) was measured using agar-based socket type sensors. The OCP measurement showed the consistent behavior where the potential was reduced in wet conditions and it was partially recovered in dry conditions. In the case of 30 mm of cover depth for most W/C ratio cases, the lowest OCP value was measured and rapid OCP recovery was evaluated in increasing cover depth from 30 mm to 45 mm, since cover depth was an effective protection against chloride ion ingress. As the chloride concentration increased, the effect on the cover depth tended to be more dominant than the that of W/C ratio. After additional monitoring and physical evaluation of chloride concentration after specimen dismantling, the proposed system can be improved with increasing reliability of the corrosion monitoring.

'Choyoung', Triticale Cultivar for Forage of Early-Heading, Resistance to Lodging and High Seed Production (조숙 내도복 종실 다수성 조사료용 트리티케일 품종 '조영')

  • Han, Ouk-Kyu;Park, Hyung-Ho;Park, Tae-Il;Oh, Young-Jin;Ahn, Jong-Woong;Ku, Ja-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.68-74
    • /
    • 2019
  • 'Choyoung', a winter forage triticale cultivar (X Triticosecale Wittmack), was developed at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2015. The cultivar 'Choyoung' has the leaves of medium width, long length and green color and a medium grain of brown color. The heading date of the cultivar 'Choyoung' was April 30 which was 2 days earlier than that of check cultivar 'Shinyoung'. Its tolerance or resistance to cold, wet injury, powdery mildew, and leaf rust was similar to those of the check cultivar. But the resistance to the lodging of cultivar 'Choyoung' was stronger than that of the check. The average forage fresh and dry matter yield of cultivar 'Choyoung' at milk-ripe stages were 40.5 and $15.7MT\;ha^{-1}$, respectively, which were similar to those (40.3 and $16.1MT\;ha^{-1}$) of the check cultivar. The silage quality of 'Choyoung' was higher than that of the check cultivar 'Shinyoung' in crude protein content (5.9%), while was similar to the check cultivar 'Shinyoung' in acid detergent fiber (33.9%), neutral detergent fiber (57.3%), and total digestible nutrients (62.2%). It showed a grain yield of $5.59MT\;ha^{-1}$, which was 38% higher than that of the check cultivar 'Shinyoung' ($4.05MT\;ha^{-1}$). This cultivar is recommended for fall sowing forage crops in areas in which average daily minimum mean temperatures in January are higher than $-10^{\circ}C$.