• Title/Summary/Keyword: wet transfer

Search Result 175, Processing Time 0.025 seconds

A Study on the Performance of Heat Exchanger for Closed Cooling Tower (밀폐식 냉각탑용 열교환기의 성능에 관한 연구)

  • Lee, Sang-Sik;Yoo, Seong-Yeon;Kim, Jin-Hyuck;Ahn, Young-Hwan;Park, Hyoung-Joon;Ryu, Hae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.334-339
    • /
    • 2008
  • An closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The purpose of this study is to evaluate thermal performance of heat exchanger at various conditions and to provide design datebase. The experimental study regarding heat exchanger for closed cooling tower was conducted. Experimental apparatus consists of constant temperature bath, water pump, spray nozzle, heat exchanger, fan, and date acquisition system. Heat transfer rates at various air velocitys, water flow rates, two different spray modes were measured and heat transfer coefficient were calculated to compare the thermal performances. This study provides that the heat transfer coefficient increases with increasing spray water flow rate and with increasing air velocity. The wet mode was more effective than dry mode for closed cooling tower to this study.

  • PDF

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

Performance Comparison between Indirect Evaporative Coolers made of Aluminum, Plastic or Plastic/Paper (알루미늄, 플라스틱, 플라스틱/종이 재질의 간접 증발 소자 성능 비교)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8165-8175
    • /
    • 2015
  • In Korea, summer is hot and humid, and air-conditioners consume lots of electricity. In such case, simultaneous usage of indirect evaporative cooler may reduce the sensible heat and save the electricity. In this study, heat transfer and pressure drop characteristics of indirect evaporative cooler made of aluminum, plastic, plastic/paper are investigated both under dry or wet condition. Results show that indirect evaporation efficiencies of the plastic/paper sample (38.5% ~ 51.4%) are approximately the same as those of the aluminum sample (41.9% ~ 47.5%), and are larger than those of the plastic sample (29.0% ~ 37.4%). This suggests that the plastic/paper sample could be a good substitute to the aluminum sample. However, the pressure drops across the paper channel are 92% ~ 106% larger than those across the aluminum channel. The heat transfer coefficients of the paper channel under dry condition are 15% ~ 44% larger than those of the plastic channel. The increases are 185% ~ 203% for the aluminum channel. The pressure drops of the paper channel are 34% ~ 48% larger than those of the plastic channel and 93% ~ 106% larger than those of the aluminum channel. Rigorous heat transfer analysis reveals that, for the plastic sample, 30% ~ 37% of the wet channels remain dry, whereas all the channels are wet for plastic/paper sample. For aluminum sample, the ratio is 17% ~ 23%.

Mass transfer Characteristic during Osmotic Dehydration of Ginger and Its Effect on Quality (생강 삼투압 건조 시 물질이동 특성과 품질에 미치는 효과)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.372-376
    • /
    • 1998
  • Internal mass transfer during osmotic dehydration of gingers in sugar solution was examined as a function of concentration, temperature and immersion time of those solutions using moisture loss, sugar gain, molality and rate parameter. Influence of osmotic dehydration on browning reaction and texture properties of air dried rehydrated was also evaluated. Increasing the concentration and temperature of sugar solutions increased moisture loss, sugar gain, molality and rate parameter. Water loss and sugar gain were rapid in the first 3 min and then changed gentle slope. Moisture loss during osmotic dehydration using a sugar solution $(60\;Brix,\;80^{\circ}C)$ with 18 min immersion time was 40.05 g moisture/100 g wet ginger which was 52% reduction of initial moisture content in ginger (83.02%, wet basis). The changes of rate parameter were more affected by temperature than by concentration of sugar solution. Minimum browning degree (O.D.=0.027) was carried out by osmotic dehydration in sugar solution $(40\;or\;50\;Brix,\;80^{\circ}C)$ with 15 min immersion time compared to control (O.D.=0.132). Influence of osmotic dehydration on puncture forces of 3 min rehydrated ginger in boiling water were $22{\sim}34%$ of reduction, while blanching treatment had not affected compared to those of control.

  • PDF

A Study on the Wet Clutch Pattern Design for the Drag Torque Reduction in Wet DCT System (습식 DCT의 드래그 토크 저감을 위한 클러치 패드 유로 설계)

  • Cho, Junghee;Han, Juneyeol;Kim, Woo-Jung;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • The drag torque in the wet clutch system of a dual clutch transmission system is investigated because it is relatively high, up to 10 of the total output torque of the engine, even when the clutch is in the disengagement state with zero torque transfer. Drag torque results from the shear resistance of the DCTF between the friction pad and separator plate. To reduce the drag torque for ensuring fuel economy, the groove pattern of the wet clutch friction pad is designed to have a high flow rate through the pattern groove. In this study, four types of groove patterns on the friction pad are designed. The volume fraction of the DCTF (VOF) and hydrodynamic pressure developments in the gap between the friction pad and separator plate are computed to correlate with the computation of the drag torque. From the computational results, it is found that a high VOF and hydrodynamics increase the drag torque resulting from the shear resistance of the DCTF. Therefore, a patterned groove design should be used for increasing the flow rate to have more air parts in the gap to reduce the drag torque. In this study, ANSYS FLUENT is used to solve the flow analysis.

Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels (대향류 핀삽입형 재생증발식 냉방기의 냉방성능)

  • Moon, Hyun-Ki;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

Effects of Temperature Regimes for Storage of Ginseng Seeds during Cold-stratification for Spring Sowing

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Moon, Ji Won;Jang, In Bok
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.44-44
    • /
    • 2019
  • Spring sowing of ginseng seeds often results in failure of seedling establishment. Storage condition during winter, sowing time, and seed treatment might effect on germination. Here we tested effects of temperature regimes of seed storage on spring sowing. Dehisced wet or dry ginseng seeds were stored at $2^{\circ}C$, $-2^{\circ}C$, $-3.5^{\circ}C$, or alternating temperature: at $2^{\circ}C$ until December, $-3.5^{\circ}C$ in January, and $2^{\circ}C$ in February, and sowed in March. In overall, emergence rate was dependent on storage temperature, and $-3.5^{\circ}C$ resulted poorest emergence than other conditions. Storage of wet seeds in alternating temperature resulted highest emergence rate. Seed dry also affected on emergence rate, while it was dependent on the storage temperature. In terms of growth, storage at $2^{\circ}C$ as wet seed resulted highest growth, and dried seeds resulted poorer growth than wet seeds. As a modification of alternating temperature, seeds were stored at $2^{\circ}C$ at first, then transferred to $-3.5^{\circ}C$ at Nov 30, Dec 20, and Jan 10, each. When transfer date was delayed, emergence rate was increased. We suggest that seed storage temperature for ginseng should not be decreased below $-2^{\circ}C$, and alternative temperature regime for successful spring sowing could be useful.

  • PDF

Experimental Study on the Determination of Heat Transfer Coefficient for the KURT (KURT 내 열전달계수 결정에 관한 실험적 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.507-516
    • /
    • 2009
  • In cases of high-level radioactive waste repositories, heat load is apparent by radioactive waste decay. The safety of a waste repository would be influenced by changing circumstances caused by heat transfer through rock. Thus, a ventilation system is necessary to secure the waste repository. The first priority for building an appropriate ventilation system is completing a computer simulation research with thermal rock properties and a heat transfer coefficient. In this study, the heat transfer coefficient in KURT was calculated using the measurement of inner circumstance factors that include dry bulb and wet bulb temperature, rock surface temperature, and barometric pressure. The heater that is 2 m in length and 5 kw in capacity heats the inside of rock in the research module by $90^{\circ}C$. As a result of determining the heat transfer coefficient in the heating section, the changes of heat transfer coefficient were found to be a maximum of 7.9%. The average heat transfer coefficient is approximately 4.533 w/$m^2{\cdot}K$.

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

Fabrication of Solder Bump Pattern Using Thin Mold (박판 몰드를 이용한 솔더 범프 패턴의 형성 공정)

  • Nam, Dong-Jin;Lee, Jae-Hak;Yoo, Choong-Don
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • Solder bumps have been used to interconnect the chip and substrate, and the size of the solder bump decreases below $100{\mu}m$ to accommodate higher packaging density. In order to fabricate solder bumps, a mold to chip transfer process is suggested in this work. Since the thin stainless steel mold is not wet by the solder, the molten solder is forced to fill the mold cavities with ultrasonic vibration. The solders within the mold cavities are transferred to the Cu pads on the polyimide film through reflow soldering.